
Antony Steel

#include <std_disclaimer.h>
 These notes have been prepared by an Australian, so
 beware of unusual spelling and pronunciation.
 All comments regarding futures are probably nothing
 more than the imagination of the speaker and are
 IBM Confidential till after GA.

Belisama

Session: s111035 Introduction to GPFS

Thanks to:
Sven, Scott and the GPFS team
Lin Feng Shen

© 2020 Belisama Introduction to GPFS 2

BelisamaAbstract

● This session will introduce participants to the installation, configuration, operation and
management of Spectrum Scale (GPFS)

● Explore some of new features of Spectrum Scale, ESS, ECE ...

© 2020 Belisama Introduction to GPFS 3

BelisamaSpectrum Scale (GPFS)
 Introduction

 File System Types
 History and Milestones
 Usage scenarios
 Key strengths and competition

 Understanding GPFS
 Base Concepts
 Network Shared Disks (NSD)
 Blueprints & Daemons

 Get Started / How To Guide for AIX/Linux
 Creating a GPFS Cluster
 Network Shared Disk infrastructure

 GPFS features and functions

© 2020 Belisama Introduction to GPFS 4

BelisamaSpectrum Scale / GPFS, what is it?
 What is it

– Software from IBM that runs on AIX, Linux (p/x/z), Windows (Client / Server)
– Serves data (file, object..) via GPFS “protocol” (Client Software), NFS, SMB, Swift
– IBM also sells as

• Appliance: ESS (older versions SoFS and SoNAS)
• Solutions: DB2 PureScale, HPC, AI, SAP, NovaLink, Oracle RAC

 What does it include
– High performance scalable posix file system
– Management GUI (for management and monitoring)
– Powerful command line and API
– Integration with other tiers of storage (tape / cloud)

 IBM’s best kept secret
– Originally designed for multimedia applications on SP, disappeared from view as HPC solution
– Reappeared in commercial space to handle:

• Explosion in the growth of unstructured data
• Old, expired, unused data occupying space on expensive storage
• Single file stores filling up, not meeting the increasing demand for throughput or management ease

© 2020 Belisama Introduction to GPFS 5

BelisamaFile System Types

 Local filesystems
 Filesystem data only accessible by the owning server
 Data is placed locally
 Metadata is maintained locally
 File locking is done locally
 Examples: JFS, JFS2, Veritas FS, UFS, ReiserFS, EXT3, EXT4, ..

 Remote filesystems
 Data is placed on remote server
 Metadata is maintained by remote server
 File locking is done by remote server
 Single server might become performance bottleneck
 Examples: NFS v3/v4 (single server)

Data

Server

Client

Data

Server
ClientClient

© 2020 Belisama Introduction to GPFS 6

BelisamaFile System Types (cont)

 Shared filesystems
 Data is placed on shared local disks (e.g. SAN)
 Metadata is maintained by and stored on a central metadata server
 File locking is done on the metadata server
 Metadata server might become performance bottleneck
 High availability of metadata servers is often limited
 Examples: SAN file systems; filesystem extensions (e.g. Veritas)

Client

Data

Server
(metadata)

ClientClient

SAN

© 2020 Belisama Introduction to GPFS 7

BelisamaFile Systems Types (cont)

 Spectrum Scale / General Parallel File System
 Data is striped across shared local disks (e.g. SAN) or NSD servers
 Metadata is maintained by all servers in the cluster
 File locking is distributed across the servers in the cluster
 Excellent performance and scalability for large amounts of data
 Very flexible configuration
 Proven and mature high availability concepts, even for site disaster
 GPFS Clusters

• Collection of AIX; Linux; Windows Servers with passwordless ssh communication (or sudo)
• Manager / non-manager; Quorum / Non-quorum
• Form a cluster (tie-breaker disks for small clusters)

Client

Data

Server
(metadata)

ClientClient

SAN

Server
(metadata)

Server
(metadata)

© 2020 Belisama Introduction to GPFS 8

BelisamaSpectrum Scale – Global Name Space

/data

/data/r_d

/data/hr

/data/manu

/data

/data/r_d

/data/hr

/data/manu

Each file in
one filer

Parallel access to all files
from through all nodes all
protocols concurrently

© 2020 Belisama Introduction to GPFS 9

BelisamaGPFS compared with Filers

 Classic Fillers
 “loved my first filler, so easy to

manage, but when we installed the
20th….”

 Individual management
 Linear cost growth

 GPFS
 Centrally managed
 ILM part of GPFS
 Easy growth and data migration

© 2020 Belisama Introduction to GPFS 10

BelisamaHistory and Milestones

1996 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Tiger
Shark

1.x 1.4 1.5 2.1 2.2

SP SP
HACMP
(SSA)

SP
HACMP

SP
HACMP

SP
HACMP
(ESS)

1.1 1.2 1.3 2.2
2.3

2.2

2.3

2.3

3.2

3.2

3.2

2.2

2.2

2.2

3.2.1

3.2.1

3.2.1

linux

AIX

Linux on p

Remote mount

Interoperability

ILM

Expansion

3.3

3.3

3.3

3.4

3.4

3.4

restripe/snapshot

Perf / Policy / Raid

3.5

3.5

3.5

Windows

3.3 3.4 3.53.2.1

Clone/Panache

4.1

4.1

4.1

4.1

mmdsh support
Zlinux support

Encryption,
NFSv4/Callbacks

4.2

4.2

4.2

4.2

QOS/GUI/
Obj store

Now Spectrum Scale!!

4.2.2

4.2.2

4.2.2

4.2.2

4.2.3

4.2.3

4.2.3

4.2.3

GUI improved
Ubuntu

5.0

5.0

5.0

5.0

5.03

5.03

5.03

5.03

Compression,
AFM / AFM DR, GUI

ECE, Cloud
Services

© 2020 Belisama Introduction to GPFS 11

BelisamaUsage scenarios

 HPC - Scientific and technical environments
 Research & HPC
 Crash & NVH testing, CAE (Automotive and Aerospace)
 Large Cluster (AIX, Linux, BlueGene/P)
 WAN Filesystem for Data Grids

 Commercial environments
 Fast, scalable access to large amounts of file data
 High Availability clusters (HA)
 Oracle DB Real Application Clusters (RAC)
 File System for Data Warehouses (DWH)
 Media, TV, Medial, Banking and Insurance Customers
 ESS (SoNAS/SoFS) Samba / CIFS
 CNFS (Clustered NFS)
 VTL (Virtual Tape Libraries)

 Systems
 Blue Gene
 Mare Nostrum.....
 Watson

 SAP and oracle certified...
 Spectrum Protect integration (see Advanced admin guide)
 Clustered Network File System (CNFS)

 See Redbook

PowerVC / novalink Software
Defined storage

© 2020 Belisama Introduction to GPFS 12

BelisamaGPFS Clusters

 1 to 8,192 Nodes supported
 Tested up to 5,000 Linux nodes and 2,000 AIX Nodes
 There are many GPFS installations that contain more than 500 nodes

 Operating Systems include AIX, Linux and Windows
 AIX 5L; AIX 6.1; AIX 7.1; AIX 7.2
 pLinux, x_86, x86_64 Distros: RHEL 5, 6 and 7 and SLES 10, 11 and 12 .. Ubuntu
 Blue Gene (BG/L,BG/P)
 Windows 2008 Server 64Bit

 Can run a mix of OS levels and a mix of AIX and Linux nodes (and now windows)
 There was a Management GUI 3.2/3.3 – gone in 3.4! But will be back in 4.1 sp2 and ESS

© 2020 Belisama Introduction to GPFS 13

BelisamaKey strengths

 Mature IBM product generally available since 1998
 Used by thousands of customers in large production environments
 Excellent support, FAQ pages, technical forum, papers, ...
 Constantly introducing enhancements and new features

 Standard, POSIX-compliant UNIX file system interface
 Buffered I/O, synchronous I/O, asynchronous I/O, Direct I/O
 Additional non-POSIX extensions (e.g. data-shipping, hints)

 Truly parallel, high performance cluster file system
 Simultaneous read and write access from different nodes
 Token-based distributed locking
 AIX clusters, Linux clusters and even AIX/Linux mixed clusters
 I/O performance 102 GB/sec with 1.9 PB Storage (ASCII Purple)
 2400 GPFS nodes at Mare Nostrum cluster in Barcelona
 CORAL project (Dept Energy US) ESS 4608 Nodes providing 250PB meeting benchmark

of 2.5 TBps in a single stream / creation of 2.6 million 32K files per second.

© 2020 Belisama Introduction to GPFS 14

BelisamaKey strengths (cont)
 Ease of use and robustness

– Administration can be done from any node with simple commands
– Online reconfiguration (adding and deleting disks and nodes)
– High recoverability and increased data availability
– Information Life-cycle Management (ILM)

 Scalability and performance
 Scalability to a large numbers of nodes and disks
 Ability to support extremely large files
 Striping of data across nodes and disks to maximise throughput

 Flexibility and interoperability
 Support for mixed clusters running Linux or AIX (sharing disks) plus Windows (not sharing disks)
 Shared file system access across separate GPFS clusters
 Improved file serving for Network Filesystem (NFS) v4 functions and performance

© 2020 Belisama Introduction to GPFS 15

BelisamaLimitations
 GPFS 2.3, or later, architectural file system size limit

– 299 bytes
– Current tested limit 500PB

 Total number of files per file system
– 263 (over 40 Billion tested) Note: GPFS 3.3 and earlier 2 billion

 Total number of nodes 8,192
– A node is considered in a cluster if:
– The node shows up in mmlscluster,or
– The node is in a remote cluster and is mounting a file system in the local cluster

 Maximum number of mounted file systems
– 256

 Maximum disk size
– Limited by disk device driver and O/S (within constraints of the size if the disks

used when filesystem first created)
 Maximum number of snapshots

– 256

© 2020 Belisama Introduction to GPFS 16

BelisamaBase Concepts

 Technical concepts
 Shared Disks

 All data and metadata on globally
 accessible block storage

 Wide Striping
 All data and metadata striped across all disks
 Files striped block by block across all disks
 … for throughput and load balancing

 Distributed Metadata
 No metadata node – file system nodes manipulate

metadata directly
 Distributed locking coordinates disk access from

multiple nodes
 Metadata updates journalled to shared disk

Control network

san

Control network

Principle: scalability through parallelism and autonomy

© 2020 Belisama Introduction to GPFS 17

BelisamaBase Concepts (cont)

 Direct attached NSD
 All nodes are connected to the same

Storage Area Network
 Control information goes over an IP

network

NSD
local

NSD
local

NSD
local

NSD
local

NSD
local

san

NSD
client

NSD
client

NSD
server

NSD
server

NSD
server

san

 LAN attached NSD
 Some nodes act as NSD (Network

Shared Disk) servers
 Control information and data goes over

an IP network or a high performance
switch

Network shared disks architecture

NSD
server

NSD
server

NSD
server

© 2020 Belisama Introduction to GPFS 18

BelisamaBase Concepts (cont)

 GPFS Components
 Nodes

 GPFS clusters consist of AIX nodes, Linux nodes, or a combination thereof.
 A node is an individual operating system image within a cluster, either on a single computer or on a

system partition.
 Shared network

 A TCP/IP network used for the communication between GPFS daemons
 Can also be used for transferring data from and to the NSDs

 Network shared disks (NSDs)
 All disks utilised by GPFS must first be given a globally accessible NSD name
 NSD provide a method for cluster-wide disk naming and access (all nodes see /dev/nsd_00x)
 On Linux machines running GPFS, you may give an NSD name to:

 Physical disks
 Logical partitions of a disk
 Representations of physical disks (such as LUNs)

 On AIX machines running GPFS, you may give an NSD name to:
 Physical disks
 Virtual shared disks (old)
 Representations of physical disks (such as LUNs)

© 2020 Belisama Introduction to GPFS 19

BelisamaBase Concepts (cont)

Heartbeat, token management etc

lun1 lun2 lun3
lun4 lun5 lun6
lun7 lun8 lun9
...

Client/Server
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

SAN Option

All nodes NSD
Servers

LUNs mounted on
all nodes

SAN

FC controller

RAID
controller

array 2

RAID
controller

RAID
controller

array 1

.....

lun1 lun2 lun3
lun4 lun5 lun6
lun7 lun8 lun9
...

Client/Server
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

lun1 lun2 lun3
lun4 lun5 lun6
lun7 lun8 lun9
...

Client/Server
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

No single point of failure
- Dual paths
- Primary and Secondary NSD servers
- RAID protection in storage
- replication across storage

“Client/protocol network”

© 2020 Belisama Introduction to GPFS 20

BelisamaBase Concepts (cont)

Heartbeat, token management etc

lun1 lun2 lun3
lun4 lun5 lun6
lun7 lun8 lun9
...

Client/Server
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

SAN Option

All nodes NSD
Servers

LUNs mounted on
all nodes

SAN

FC controller

RAID
controller

array 2

RAID
controller

RAID
controller

array 1

.....

lun1 lun2 lun3
lun4 lun5 lun6
lun7 lun8 lun9
...

Client/Server
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

lun1 lun2 lun3
lun4 lun5 lun6
lun7 lun8 lun9
...

Client/Server
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

No single point of failure
- Dual paths
- Primary and Secondary NSD servers
- RAID protection in storage
- replication across storage

Client
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

Client
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

Client
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

NSD
GPFS layer
providing view of
disks

“Client/protocol network”

© 2020 Belisama Introduction to GPFS 21

BelisamaBase Concepts (cont)

Heartbeat, token management etc

Client/Server

GPFS NSD
nsd01 nsd02
nsd03 nsd04

FPO Option / ECE

All nodes NSD
Servers

Writes spread over
all nodes / servers.
Replicated and
placement optimised
by proximity to the
process

Client/Server

GPFS NSD
nsd05 nsd06
nsd07 nsd08

Client/Server

GPFS NSD
nsd09 nsd10
nsd11 nsd12

No single point of failure
- Dual paths
- Primary and Secondary NSD servers
- RAID protection in storage
- replication across storage

lun11

lun10lun09

lun08lun07

lun06lun05

lun04lun03

lun02lun01

lun12

“Client/protocol network”

© 2020 Belisama Introduction to GPFS 22

BelisamaBase Concepts (cont) - the ESS view of GPFS

lun1 lun2 ...

Storage

GPFS NSD
nsd1 nsd2 ...

RAID
controller

array 2

RAID
controller

RAID
controller

array 1

.....

Interface
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

Interface
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

Interface
GPFS NSD
nsd1 nsd2
nsd3 nsd4
nsd5

lun1 lun2 ...

Storage

GPFS NSD
nsd1 nsd2 ...

lun1 lun2 ...

Storage

GPFS NSD
nsd7 nsd8 ...

lun1 lun2 ...

Storage
GPFS NSD
nsd7 nsd8 ...

RAID
controller

array 2

RAID
controller

RAID
controller

array 1

.....

“Client/protocol network”

© 2020 Belisama Introduction to GPFS 23

BelisamaBase Concepts (cont) – the GPFS structure

Application

filesystem
call

Kernel

vnode / vfs

GPFS portability layer (Linux only)

GPFS kernel extension

gpfs inode

Kernel

vnode / vfs

metanodeFilesystem managerConfiguration manager

GPFS admin commands

GPFS daemon
(mmfsd)

NSD

© 2020 Belisama Introduction to GPFS 24

BelisamaBase Concepts (cont)

 GPFS daemon (mmfsd) roles

multi-threaded gpfs
Daemon (mmfsd)

metanode

Configuration manager

File managerFile manager

metanodemetanodemetanode

Filesystem manager

One per cluster, elected
 by the quorum nodes

One per mounted filesystem

One per open file

Drives recovery after node failure

Selects filesystem manager(s)

Filesystem configuration
Disk space allocation

Security services
Token management

File metadata updates

Quota management

© 2020 Belisama Introduction to GPFS 25

BelisamaBase Concepts (cont)

 HA-NFS / cNFS
 GPFS and HA-NFS features contained entirely in the GPFS cluster
 Clients access storage via NFS

 Clients use vanilla NFS (no special software – only DNS RR)
 Clients can be AIX, Linux, Solaris, MAC (or any other Unix based OS)

monitor nfsdmonitor
mmfsd
node1

monitor nfsdmonitor
mmfsd
node1

monitor nfsdmonitor
mmfsd
node2

monitor nfsdmonitor
mmfsd
node1

monitor nfsdmonitor
mmfsd
node1

monitor nfsdmonitor
mmfsd
node1

monitor nfsdmonitor
mmfsd
node3

monitor nfsdmonitor
mmfsd
node1

monitor nfsdmonitor
mmfsd
node1

monitor nfsdmonitor
mmfsd
node4

NFS
Client 1

NFS
Client 2

NFS
Client 3

NFS
Client 4

NFS
Client 5

Some round robin
load balancing

© 2020 Belisama Introduction to GPFS 26

BelisamaPlan a GPFS cluster

● Plan a GPFS cluster
– Plan hardware

● Supported
● Storage and zoning
● Firmware

– Operating system
● Supported
● Fixes

– GPFS
● Install and update

– Linux
● Compile the General portability layer

– Planning networks
● Open firewall ports for GPFS daemon; ssh; ping

● Create a node definition file
– Exchange keys and ensure that ssh is passwordless for root from every node to every other node

(including itself)
● Create a GPFS cluster

© 2020 Belisama Introduction to GPFS 27

BelisamaPlanning considerations

● Nodes
– Sizing
– Number of nodes to provide thoughput
– Node quorum considerations (or tiebreaker disks for very small clusters)

● Small odd number of most reliable nodes spread across the infrastructure
● Filesystems

– Number of filesystems
● Different than planning local file systems, fewer file systems often better
● Multiple applications can often share a file system
● Split clusters – separate security contexts but can cross mount
● Are the requirements within architectural limits?

– < 263 files, with Size limit 299 Bytes -> Current tested size order for 100s PB
● Create file systems to support performance requirements

– Disk type differences can be addressed using Storage Pools
– Block size

● 64KB blocksize for small block random I/O
– Examples: Email service, Web applications

● 256KB for standard file service and for larger block random IO (anything bigger very expensive for small writes)
– Examples: User file service, Grid analytical systems

● 2MB to 4MB for large block sequential read/write
– Examples: Digital media, Data warehousing, Weather modelling

● Match filesystems to application blocksize:
– /gpfs1 – 64K block size
– /gpfs2 – 256K block size

– Numbers of filesystem replicas

© 2020 Belisama Introduction to GPFS 28

BelisamaFurther planning considerations

● Metadata
– Access required when change is made to files “metadata”
– Manger nodes in cluster can manage metadata
– Can be bottleneck with 1000s files created / deleted.
– Use smaller number of filesystems
– Each application has own sub directory
– Use different directories to reduce contention
– Since 4.1, you can set the inode size (default is 4KB)

● Working in a multi-node environment
– Keep consistent

● applications
● user data
● patches

– Understand what will happen if two applications open the one file, both to the file and that it is expensive locking
– Some operations in a parallel environment are not cheap – for example stat(2) and readdir(3).
– Frequent dir scans looking for new files will hurt performance
– stat() on a file from another node will affect your write performance

● Segments = 1/32 of a block
– The smallest amount of disk allocated by GPFS (variable block size introduced in 5)

© 2020 Belisama Introduction to GPFS 29

BelisamaStill further planning considerations

● Application - number of filesystems
– Different than planning local file systems
– Fewer file systems
– Multiple applications can often share a file system
– Split clusters – separate security contexts but can cross mount
– Are the requirements within architectural limits?

● < 4 Billion Files (tested 3.4)
● Size limit 299 Bytes -> Current tested size order for 100s PB

– Create file systems to support performance requirements
● Disk type differences can be addressed using Storage Pools

– Application is GPFS aware – use the GPFS API
● Direct I/O caching option

– The Direct I/O caching policy bypasses file cache and transfers data directly from disk into the user space buffer, as opposed
to using the normal cache policy of placing pages in kernel memory. Applications with poor cache hit rates or very large I/Os
may benefit from the use of Direct I/O

● mmchattr -D [{yes | no }] filename
– Or

● Direct I/O may also be specified by supplying the O_DIRECT file access mode on the open() of the file.
– mmchattr can also be used to set files

● Set files as immutable
● Set files as append only
● Number of replicas of data and/or metadata
● Storage pool

© 2020 Belisama Introduction to GPFS 30

BelisamaStorage considerations

● Data storage
– Two types of data storage

● Metadata (inode)
● File Data

– Metadata
● File stat info: Date created, last access

time, size
● Reserved files (inode file, allocation map,

inode map)
● Indirect blocks, directories, symbolic links
● Active Policy definitions

– File Data
● Contents of the file(s)

– Metadata and Data can be shared or
separate

Application GPFS

Raid Calc

● Data storage (cont)
– Arrays are defined as metadataOnly,

dataOnly or dataAndMetadata
– Shared metadata and data

● Works well for many applications
– Separate data and metadata

● Using Storage pools
● Metadata can only be stored in the

system storage pool
● Reduce contention on metadata
● Reduce storage costs – Isolate metadata

on Fibre, data on SATA
– tune LUN config for access type / access

size

© 2020 Belisama Introduction to GPFS 31

BelisamaStorage considerations (cont)
● Storage Configuration

– IO Balance
– Even number of LUNS per path
– Even number of LUNS per NSD server

● RAID Level
– Right level for IO pattern

● Cache Configuration
– Read ahead not recommended for –j scatter
– Write cache for metadata LUNS

● Interconnect Selection and Tuning
– TCP/IP Tuning
– Fibre Channel Settings
– InfiniBand Configuration

© 2020 Belisama Introduction to GPFS 32

BelisamaNetwork considerations
● Network

– Firewall settings
– Availability and throughput - use Bonding
– Enable jumbo frames if supported by the switch
– Don't use DNS for GPFS private network (netsvc.conf or nsswitch.conf -> hosts)
– For security use ssh/scp/sftp, turn off unnecessary services, password rules and expiry,
– Keep user information consistent in clustered environment

© 2020 Belisama Introduction to GPFS 33

BelisamaGPFS Site considerations

● Availability / Multi site
– Distributed Data
– data is distributed across 2 sites, 3rd site contains quorum node for availability
– Sites A and B

● contain the core GPFS nodes and storage
● Multiple quorum nodes in each site

– Site C
● “Laptop solution”
● contains a single quorum node, filesystem descriptor
● Serves as tie breaker if one of the other sites

 becomes inaccessible WAN

Site
A

Site
C

Site
B

© 2020 Belisama Introduction to GPFS 34

BelisamaInside GPFS

 A GPFS cluster
 Nodes, disks and filesystems
 Using the filesystem
 Monitoring the cluster

© 2020 Belisama Introduction to GPFS 35

Belisama Get Started / How to Guide

 Creating a GPFS Cluster
 Plan a GPFS cluster
 Create a node definition file
 Create a GPFS cluster
 View information on the GPFS cluster
 View information on the GPFS configuration
 Startup GPFS on the nodes
 View information on the status of the GPFS cluster
 Stop GPFS on the nodes

© 2020 Belisama Introduction to GPFS 36

BelisamaCreate a node definition file

 Create a file with one node descriptor line per node
 NodeName:NodeDesignations:AdminNodeName
 Where:

 NodeName is either IP address or IP name of the interface that GPFS should use to communicate
with the other nodes

 NodeDesignations is an optional “-” separated list of node roles (quorum or nonquorum, manager or
client)

 AdminNodeName is an optional IP address or IP name, that GPFS should use for administrative
commands instead of NodeName

For example: /tmp/gpfs-nodes.txt
 node1:quorum-manager:n1
 node2:quorum-manager:n2
 node3:quorum-manager:n3
 node4:nonquorum-manager:n4

© 2020 Belisama Introduction to GPFS 37

BelisamaCreate a GPFS cluster
 The most important options of the mmcrcluster command are:

 -A: Startup GPFS daemons automatically when nodes come up.
 -N <NodeDefFile>: specifies the node definition file (list of node descriptors)
 --ccr-enable: Enables the configuration server repository to store redundant copies of

the configuration data files on all quorum nodes (default)
 --ccr-disable: The previous configuration with a primary and secondary configuration

server node
 -p <PrimaryServer>: specifies the primary cluster configuration server node
 -s <SecondarySrv>: Specifies the secondary cluster configuration server node

 -R <RemoteFileCopy>: path/name for remote copy program, e.g. /usr/bin/scp
 -r <RemoteShellCmd>: path/name for remote shell program, e.g. /usr/bin/ssh

mmcrcluster -N /tmp/gpfs-nodes.txt -p node2 -s node3 -r /usr/bin/ssh -R /usr/bin/scp
Wed Jun 24 18:34:26 EET 2009: mmcrcluster: Processing node node1
Wed Jun 24 18:34:27 EET 2009: mmcrcluster: Processing node node2
Wed Jun 24 18:34:28 EET 2009: mmcrcluster: Processing node node3
Wed Jun 24 18:34:30 EET 2009: mmcrcluster: Processing node node4
mmcrcluster: Command successfully completed
mmcrcluster: Propagating the cluster configuration data to all affected nodes. This is an asynchronous process.

© 2020 Belisama Introduction to GPFS 38

Belisama

mmlscluster
GPFS cluster information
========================
 GPFS cluster name: ess_test1
 GPFS cluster id: 12398410922139748073
 GPFS UID domain: ess_test1.syd-demo.ibm
 Remote shell command: /usr/bin/ssh
 Remote file copy command: /usr/bin/scp

GPFS cluster configuration servers:

 Primary server: ts1.red.com
 Secondary server: ts2.red.com

 Node Daemon node name IP address Admin node name Designation

 1 ts1.red.com 172.16.1.11 ts1.red.com quorum-manager
 2 ts2.red.com 172.16.1.12 ts2.red.com quorum-manager
 3 ts3.red.com 172.16.1.13 ts3.red.com quorum-manager

View information on the GPFS cluster

 The mmlscluster command displays information on the cluster configuration, NOT the
status of the cluster
– Information about the cluster itself, such as cluster name, remote shell / remote copy

command and cluster configuration servers
– Information about the nodes in the cluster, such as IP address and node designation

© 2020 Belisama Introduction to GPFS 39

BelisamaView information on the GPFS configuration

 The mmlsconfig command displays information on the GPFS configuration parameters and
file systems
 The first section shows global GPFS configuration parameters

 Parameters that are unique to this GPFS cluster such as the name
 Parameters that do not have the default value
 At the end of this section there might be the node name in brackets, followed by individual

parameter settings for this node
 A list of file systems defined in this GPFS cluster

mmlsconfig
[root@ts1 ras]# mmlsconfig
Configuration data for cluster sofs151.red.com:

clusterName ess_test1.syd-demo.ibm
clusterId 12398410922139748073
clusterType lc
autoload yes
MinReleaseLevel 4.1.0.1
dmapiFileHandleSize 32
leaseRecoveryWait 3
...

..... (cont)
maxFilesToCache 20000
maxStatCache 80000
FailureDetectionTime 10
maxMBpS 500
unmountOnDiskFail no
allowSambaCaseInsensitiveLookup no
enableLowspaceEvents yes
cipherList AUTHONLY
pagepool 64M
dmapiDataEventRetry 2
verifyGpfsReady yes

© 2020 Belisama Introduction to GPFS 40

BelisamaImportant tuning parameters

● GPFS use of memory
– Two areas of memory
– Pinned (pagepool) – used to store user data and filesystem metadata to support I/O operations
– Not Pinned – two levels of cache for storing file metadata
– Pagepool

● The pagepool mechanism allows GPFS to implement read as well as write requests asynchronously.
Increasing the size of pagepool increases the amount of data or metadata that GPFS can cache
without requiring synchronous I/O. The amount of memory available for GPFS pagepool on a
particular node may be restricted by the operating system and other software running on the node.

● The following types of I/O may benefit from increasing the pagepool:
– There are frequent writes that can be overlapped with application execution.
– There is frequent reuse of file data that can fit in the pagepool.
– The I/O pattern contains various sequential reads large enough that the prefetching data improves

performance.
● For NSD Servers, 3*#LUNS*maxBlockSize should be < 30% pagepool

– maxFilesToCache
● This space needs to be big enough for currently opened files and to cache some recently used files

(default 1000). If there are applications that test files, without actually opening them – such as
backups, this value may be increased.

● Memory used is maxFilesToCache * 3KB (2.5 pre 3.3)

© 2020 Belisama Introduction to GPFS 41

BelisamaImportant tuning parameters (cont)
● Memory (cont)

– maxStatCache
● This parameter sets aside additional pageable memory to cache attributes of files that are not

currently in the regular file cache (default is 4000). This is useful to improve the performance of
both the system and GPFS stat() calls for applications with a working set that does not fit in the
regular file cache.

● maxStatCache × 400 bytes (176 pre 3.3)
– The total amount of memory GPFS uses to cache file data and metadata is arrived at by adding

pagepool to the amount of memory required to hold inodes and control data structures
(maxFilesToCache × 3 KB), and the memory for the stat cache (maxStatCache × 400 bytes)
together.

– The combined amount of memory to hold inodes, control data structures, and the stat cache is
limited to 50% of the physical memory on a node running GPFS.

● ShareMemLimit (increased in 3.2)
– Size of the shared memory segment (kernel and mmfs daemon) used by GPFS

© 2020 Belisama Introduction to GPFS 42

BelisamaImportant tuning parameters (cont)

● maxMBps
– This value is usually set to be two times the maximum I/O throughput that GPFS can

achieve. Not used by the NSD Servers, only application nodes doing sequential access.
● Number nodes to mount

– GPFS uses for internal tuning (default 32)
● Exact mtime, suppress atime

– So stat() calls are accurate – but expensive!

© 2020 Belisama Introduction to GPFS 43

BelisamaImportant tuning parameters (cont)

● Define NSD Servers
– In GPFS 3.2.1 and above you can define up to 8

NSD Servers for each NSD
– If the path to the disks for a node fails, and other

NSD server are set, then the node will continue to
operate, communicating with the remaining NSD
Server(s) by the GPFS private network. The
customer needs to decide whether they want to have
the nodes always serving the filesystem (and
therefore running their application) at the expense of
increased network traffic. The alternative is to set all
as “directly attached”.

– Define multiple NSD servers for each NSD.

Data

Server
(metadata)

SAN

Server
(metadata)

Server
(metadata)

DataData

© 2020 Belisama Introduction to GPFS 44

BelisamaImportant tuning parameters (cont)

● distributedTokenService
– Specifies whether the token server role for a file system should be limited to only the file system

manager node (no), or distributed to other nodes for better file system performance (yes) –
default is yes.

● Exact mtime mount
– if yes (the default) them mtime and ctime will always be correct for the stat() call. If no, can be

out for a couple of minutes.
– Recommend: If the Application Vendor has no concerns, set to no

● Suppress atime mount
– atime represents the time when the file was last accessed. This parameter controls the updating

of the atime value. The default it is no, which results in updating atime locally in memory
whenever a file is read, but the value is not visible to other nodes until after the file is closed. If
an accurate atime is needed, set to no, the default.

– Recommend: If the Application Vendor has no concerns, set to yes

© 2020 Belisama Introduction to GPFS 45

BelisamaImportant tuning parameters (cont)
● Prior to GPFS 4.2.0.3 we used to tune worker1threads and worker3 threads

– worker1threads is the total number of concurrent application requests that can be processed at
one time. This may include metadata operations like file stat() requests, open or close and for data
operations.

– worker3threads specifies the number of threads to use for inode prefetch.
– Typically these values were set at their default then increased after reviewing cluster operation

and mmdiag output.
● workerthreads were documented in 4.2.1 – GPFS will tune on configuration on startup.

Tune as did before with worker1threads (for example set to 512 for high performance NSD
server clusters)

● The default inode size since 4.1 is 4KB

© 2020 Belisama Introduction to GPFS 46

BelisamaStarting the cluster

 mmstartup starts the GPFS subsystem
 -N Nodelist to start the cluster on one or a subset of the nodes
 The –a option starts GPFS on all nodes

mmstartup -a
SUn Jan 28 11:54:33 EST 2018: mmstartup: Starting GPFS ...

© 2020 Belisama Introduction to GPFS 47

BelisamaViewing the state of the cluster
 The mmgetstate command displays the state of the GPFS daemon on one or more

nodes
 -a shows the status of GPFS on all nodes
 -L shows extended node information
 -s shows a summary status

mmgetstate -aL

 Node number Node name Quorum Nodes up Total nodes GPFS state Remarks
--
 1 ts1 2 0 3 active quorum node
 2 ts2 2 0 3 active quorum node
 3 ts3 2 0 3 arbitrating quorum node

 Summary information

Number of nodes defined in the cluster: 3
Number of local nodes active in the cluster: 3
Number of remote nodes joined in this cluster: 0
Number of quorum nodes defined in the cluster: 3
Number of quorum nodes active in the cluster: 2
Quorum = 2, Quorum achieved

© 2020 Belisama Introduction to GPFS 48

BelisamaStopping the cluster
 mmshutdown unmounts the GPFS file systems and stops the daemon on a node or nodes

 -N nodelist stops on a node or subset of nodes.
 -a stops on all nodes

mmshutdown -a
Sun Jan 28 11:51:55 EST 2018: mmshutdown: Starting force unmount of GPFS file systems
Sun Jan 28 11:52:18 EST 2018: mmshutdown: Shutting down GPFS daemons
ts2.red.com: Shutting down!
ts3.red.com: Shutting down!
ts1.red.com: Shutting down!
ts2.red.com: 'shutdown' command about to kill process 3056
ts2.red.com: Unloading modules from /usr/lpp/mmfs/bin
ts2.red.com: Unloading module mmfs
ts3.red.com: 'shutdown' command about to kill process 3312
ts3.red.com: Unloading modules from /usr/lpp/mmfs/bin
ts2.red.com: Unloading module mmfslinux
ts3.red.com: Unloading module mmfs
ts2.red.com: Unloading module tracedev
ts3.red.com: Unloading module mmfslinux
ts3.red.com: Unloading module tracedev
ts1.red.com: 'shutdown' command about to kill process 3588
ts1.red.com: Unloading modules from /usr/lpp/mmfs/bin
ts1.red.com: Unloading module mmfs
ts1.red.com: Unloading module mmfslinux
ts1.red.com: Unloading module tracedev
Sun Jan 28 11:52:45 EST 2018: mmshutdown: Finished

© 2020 Belisama Introduction to GPFS 49

Belisama Get Started / How to Guide (cont)

 Network Shared Disk infrastructure
 Create a NSD descriptor file for direct attached NSD
 Create a NSD descriptor file for NSD over LAN
 Create network shared disks
 Create a GPFS filesystem

© 2020 Belisama Introduction to GPFS 50

BelisamaCreate a NSD
 Disks for use with GPFS need to be defined and formatted, this is done by the mmcrnsd

command.
 This command requires input in form of a NSD descriptor file
 Each disk is specified in one stanza with the following format:

 Where
The only required entry is DiskName, which is the block device name for the disk appearing in /dev
 You may omit the other entries, but using the old format you have to put all colons in the line, even if

the column itself is empty
 Once mmcrnsd has completed

 the NSDs are usable in GPFS
 In older versions the NSD descriptor file was updated, so that it can be used as input file for other

commands

%nsd:
nsd=NsdName
usage={dataOnly | metadataOnly |
 dataAndMetadata | descOnly}
failureGroup=FailureGroup
pool=StoragePool
servers=ServerList
device=DiskName

© 2020 Belisama Introduction to GPFS 51

BelisamaNSD descriptor file

 Records in the NDS descriptor file are:
 DiskName

 the block device name appearing in /dev for the disk
 NSDServer (up to 8, “,” separated)

 the name of the primary NSD server node. If empty, the disk is assumed to be SAN-attached to all nodes
 No longer used (was backup nsd server)
 DiskUsage

 What kind of information should be stored on this NSD
 dataAndMetadata (the default)
 dataOnly Indicates that the disk contains data and no metadata
 metadataOnly Indicates that the disk contains metadata only
 descOnly can contain a copy of the file system descriptor only

 FailureGroup
 A number identifying the failure group. This concept is explained later when discussing high availability

 DesiredName
 Specify the name for the NSD to be created (default gpfsNNnsd)

 StoragePool
 Specifies the name of the storage pool that the NSD is assigned to and is used to group like disks for ILM.

%nsd:
nsd=NsdName
usage={dataOnly | metadataOnly |
 dataAndMetadata | descOnly}
failureGroup=FailureGroup
pool=StoragePool
servers=ServerList
device=DiskName

© 2020 Belisama Introduction to GPFS 52

BelisamaCreate a NSD descriptor file for direct attached NSD

 The DiskName has to be set to the name of the block device in /dev, as it appears on the
node where the mmcrnsd command will run
 It is possible, that the same disk will have different names on different nodes. GPFS identifies

this automatically when running mmcrnsd and updates it’s internal configuration accordingly
 You can leave server list empty, and only SAN access is supported, if you specify the server

list, then the NSD Server can be a NSD client if there is a SAN error, but local access will take
precedence.

san

%nsd:
nsd=nsd01
usage=dataAndMetadata
failureGroup=-1
pool=System
device=hdisk6
%nsd:
nsd=nsd02
usage=dataAndMetadata
failureGroup=-1
pool=System
device=hdisk7

NSD
local

NSD
local

NSD
local

NSD
local

NSD
local

© 2020 Belisama Introduction to GPFS 53

BelisamaCreate a NSD descriptor file for NSD over LAN

 The DiskName has to be set to the name of the block device in /dev, as it appears on the
PrimaryServer node

 You have to fill the server list (up to 8 servers)
 It is highly recommended to have more than one server available in case the first server fails.

%nsd:
nsd=nsd01
usage=dataAndMetadata
failureGroup=-1
pool=System
servers=Node1, Node2, Node3
device=hdisk6
%nsd:
nsd=nsd02
usage=dataAndMetadata
failureGroup=-1
pool=System
servers=Node2, Node3, Node1
device=hdisk7 san

NSD
server

NSD
server

NSD
server

NSD
client

NSD
client

© 2020 Belisama Introduction to GPFS 54

BelisamaCreate network shared disks

 mmcrnsd creates and formats disks
 -F: Specify NSD descriptor file
 -v only format blank disks

 mmlsnsd lists defined disks and usage
 mmcrnsd changes the NSD descriptor file for later use

mmcrnsd -F diskdesc.txt
mmcrnsd: Processing disk hdisk6
mmcrnsd: Processing disk hdisk7
mmcrnsd: Propagating the cluster information to all affected nodes. This is an asynchronous process.

mmmlsnsd
 File system Disk name NSD servers

 (free disk) nsd01 (directly attached)
 (free disk) nsd02 (directly attached)

© 2020 Belisama Introduction to GPFS 55

Belisamammlsd information

mmlsnsd -X

 Disk name NSD volume ID Device Devtype Node name Remarks
--
 nsd01 AC10010B49768D18 /dev/hdisk6 hdisk ts1
 nsd02 AC10010B49768D48 /dev/hdisk7 hdisk ts1

mmmlsnsd
 File system Disk name NSD servers

 gpfs0 nsd01 (directly attached)
 gpfs0 nsd02 (directly attached)

© 2020 Belisama Introduction to GPFS 56

BelisamaCreate a GPFS filesystem

 Note: With the old version of the NSD text file, the mmcrnsd command used to
modifiy the file so that it could then be used to create the filesystem. However with
the new stanza format, the same file can be used to create NSDs and the filesystem.
Remember that all NSDs in the file will be used.

%nsd:
nsd=nsd01
usage=dataAndMetadata
failureGroup=-1
pool=System
servers=Node1, Node2, Node3
device=hdisk6
%nsd:
nsd=nsd02
usage=dataAndMetadata
failureGroup=-1
pool=System
servers=Node2, Node3, Node1
device=hdisk7

© 2020 Belisama Introduction to GPFS 57

BelisamaCreate a GPFS filesystem (cont)

● mmcrfs creates a filesystem
– Need to specify mountpoint, devicename and disks
– Other options..........…

mmcrfs /gpfs gpfs0 -F /tmp/diskdesc.txt -M2 -R 2

 -s roundRobin Stripe method
 -f 8192 Minimum fragment size in bytes
 -i 512 Inode size in bytes
 -I 16384 Indirect block size in bytes
 -m 1 Default number of metadata replicas
 -M 1 Maximum number of metadata replicas
 -r 1 Default number of data replicas
 -R 1 Maximum number of data replicas
 -j cluster Block allocation type
 -D posix File locking semantics in effect
 -k posix ACL semantics in effect
 -a 1048576 Estimated average file size
 -n 32 Estimated number of nodes that will mount file system
 -B 262144 Block size
 -Q none Quotas enforced
 -F 36864 Maximum number of inodes
 -V 8.01 File system version. Highest supported version: 8.02
 -u yes Support for large LUNs?
 -z no Is DMAPI enabled?
 -E yes Exact mtime mount option
 -S no Suppress atime mount option
 -d hdisk5;hdisk6;hdisk7;hdisk8 Disks in file system
 -A no Automatic mount option
 -o none Additional mount options
 -T /gpfs1 Default mount point

© 2020 Belisama Introduction to GPFS 58

BelisamaCreate a GPFS filesystem (cont)

 mmcrfs creates a filesystem
 Need to specify mountpoint, devicename and disks
 Other options.............

mmcrfs /gpfs gpfs0 -F /tmp/diskdesc.txt -M2 -R 2

mmlsfs gpfs0
flag value description
---- ---------------- ---
 -f 4096 Minimum fragment size in bytes
 -i 512 Inode size in bytes
 -I 8192 Indirect block size in bytes
 -m 1 Default number of metadata replicas
 -M 2 Maximum number of metadata replicas
 -r 1 Default number of data replicas
 -R 2 Maximum number of data replicas
 -j cluster Block allocation type
 -D nfs4 File locking semantics in effect
 -k nfs4 ACL semantics in effect
 -a 1048576 Estimated average file size
 -n 32 Estimated number of nodes that will mount file system

© 2020 Belisama Introduction to GPFS 59

BelisamaCreate a GPFS filesystem (cont)
 Options (cont)

 -B 131072 Block size
 -Q user;group;fileset Quotas enforced
 none Default quotas enabled
 -F 33536 Maximum number of inodes
 -V 10.01 (3.2.1.5) File system version
 -u yes Support for large LUNs?
 -z no Is DMAPI enabled?
 -L 4194304 Logfile size
 -E yes Exact mtime mount option
 -S no Suppress atime mount option
 -K whenpossible Strict replica allocation option
 -P system;goldish Disk storage pools in file system
 -d sofsnsd1;sofsnsd2;sofsnsd3 Disks in file system
 -A yes Automatic mount option
 -o none Additional mount options
 -T /gpfs Default mount point

© 2020 Belisama Introduction to GPFS 60

BelisamaCreate a GPFS filesystem (cont)

 Now we just need to mount the filesystem
 mmmount -a
 mmmount -N modelist

>> NODE: 172.16.1.11 <<
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 6940484 2819492 3762748 43% /
tmpfs 377872 0 377872 0% /dev/shm
/dev/gpfs0 10485760 49664 10436096 1% /gpfs

>> NODE: 172.16.1.12 <<
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 6940484 2553752 4028488 39% /
tmpfs 248984 0 248984 0% /dev/shm
/dev/gpfs0 10485760 49664 10436096 1% /gpfs

>> NODE: 172.16.1.13 <<
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 6940484 2554320 4027920 39% /
tmpfs 248984 0 248984 0% /dev/shm
/dev/gpfs0 10485760 49664 10436096 1% /gpfs

© 2020 Belisama Introduction to GPFS 61

BelisamaDisk attributes

 mmlsdisk
 Shows details of the disks that make up a filesystem, failure group, type, status and

storage pool (next section)

mmlsdisk gpfs0
disk driver sector failure holds holds storage
name type size group metadata data status availability pool
------------ -------- ------ ------- -------- ----- ------------- ------------ ---------
nsd01 nsd 512 -1 yes no ready up system
nsd02 nsd 512 -1 no yes ready up system
Nsd03 nsd 512 -1 no yes ready up goldish
Attention: Due to an earlier configuration change the file system
is no longer properly replicated.

© 2020 Belisama Introduction to GPFS 62

Belisama GPFS features and functions - policies

 How GPFS handles storage
 Storage Pools
 Filesets
 Policies and placement

© 2020 Belisama Introduction to GPFS 63

BelisamaStorage pools

● A collection of disks or LUNs with similar properties
● Managed together as a group.
● Provide a means to partition the file system’s storage

Pool 1

Pool 3Pool 2

SSD
Fast reliable and
more expensive

SAS
Daily workload,
fast and affordable

Low cost RAID
Scratch, cost effective

/gpfs1
 /index/db1.idx
 /index/db1.dat
 …...

One filesystem (global namespace) /gpfs1

© 2020 Belisama Introduction to GPFS 64

BelisamaStorage pools (cont)

 Motivation
 Improved price-performance

 matching the cost of storage to the value of data
 Improved performance

 Reducing the contention for premium storage
 Reducing the impact of slower devices
 Matching logical block size to physical device characteristics

 Improved reliability
 Replication based on need
 Better failure containment Files

 Maximum of 8 storage pools per Filesystem
 Each disk has this attribute in its disk decriptor

 At creation time
 At the time the disk is added to the filesystem

 Files are assigned to storage
 At creation time
 Attributes of the file, match the rules of an active policy

© 2020 Belisama Introduction to GPFS 65

BelisamaUsing storage pools

 Listing
 Listing storage pools in a file system uses mmlsfs with –P flag
 Listing of a file belonging to a pool: mmlsattr

mmlsfs gpfs0 -P
flag value description
---- ---------------- ---
 -P system;goldish Disk storage pools in file system

mmlsattr new
 replication factors
metadata(max) data(max) file [flags]
------------- --------- ---------------
 1 (2) 1 (2) new

mmlsattr -L new
file name: new
metadata replication: 1 max 2
data replication: 1 max 2
flags:
storage pool name: system
fileset name: root
snapshot name:

© 2020 Belisama Introduction to GPFS 66

BelisamaUsing storage pools (cont)

 Listing (cont)
 mmdf –P shows disk utilisation related to pools

mmdf gpfs0 -P system
disk disk size failure holds holds free KB free KB
name in KB group metadata data in full blocks in fragments
--------------- ------------- -------- -------- ----- -------------------- -------------------
Disks in storage pool: system (Maximum disk size allowed is 24 GB)
sofsnsd1 5242880 -1 yes no 5084544 (97%) 624 (0%)
sofsnsd2 5242880 -1 no yes 5195392 (99%) 1232 (0%)
 ------------- -------------------- -------------------
(pool total) 10485760 10279936 (98%) 1856 (0%)

© 2020 Belisama Introduction to GPFS 67

BelisamaUsing storage pools (cont)

mmdf gpfs0
disk disk size failure holds holds free KB free KB
name in KB group metadata data in full blocks in fragments
--------------- ------------- -------- -------- ----- -------------------- -------------------
Disks in storage pool: system (Maximum disk size allowed is 24 GB)
sofsnsd1 5242880 -1 yes no 5084544 (97%) 624 (0%)
sofsnsd2 5242880 -1 no yes 5195392 (99%) 1232 (0%)
 ------------- -------------------- -------------------
(pool total) 10485760 10279936 (98%) 1856 (0%)

Disks in storage pool: goldish (Maximum disk size allowed is 12 GB)
sofsnsd3 5242880 -1 no yes 5240704 (100%) 124 (0%)
 ------------- -------------------- -------------------
(pool total) 5242880 5240704 (100%) 124 (0%)

 ============= ==================== ===================
(data) 10485760 10436096 (100%) 1356 (0%)
(metadata) 5242880 5084544 (97%) 624 (0%)
 ============= ==================== ===================
(total) 15728640 15520640 (99%) 1980 (0%)

Inode Information

Number of used inodes: 31994
Number of free inodes: 1542
Number of allocated inodes: 33536
Maximum number of inodes: 33536

© 2020 Belisama Introduction to GPFS 68

BelisamaUsing storage pools (cont)

 Administration
 Once a disk is assigned to a storage pool, the pool assignment cannot be changed
 A root user can change a file’s assigned storage pool by issuing the mmchattr -P command.

 default is to migrate the data immediately, (can use -I defer)
 The system storage pool can not be deleted
 A user storage pool is deleted once the last disk is removed from the pool
 Replicas for storage pools have the same requirements as for filesystems (i.e. failure groups)

© 2020 Belisama Introduction to GPFS 69

BelisamaFilesets

● Additional object in the Filesystem name space
– Can be mounted at different points in the GPFS namespace

● Group of objects with independent features
● Can be used to define quotas (data blocks, inodes)
● 10 000 filesets per Filesystem (3.4)
● Define data block and inode quotas at the fileset level
● Apply policy rules to specific filesets
● GPFS 3.5 introduced dependent and independent filesets

– Dependent
● Use inodes / space / snapshots from ‘global’ filesystem

– Independent
● Own inodes and snapshots, space from ‘global’ filesystem

● root fileset always exists for each filesystem
● mmlsattr –L shows membership
● Newly created files belong to the files of the parent filesystem

© 2020 Belisama Introduction to GPFS 70

BelisamaFilesets (cont)
● New created fileset

– Empty directory of the root of the fileset
– First visible when attached to files

● mmlinkfileset
● Attached using „junction“ (similar to hardlinks)
● One junction per fileset
● Junction apperas as a directory

● Unlink fileset using mmunlinkfileset
– Makes files inaccessible
– Filesets linked below are inaccessible

● Restricted to a single, connected subtree
● Only one root directory

– No other entries such as hardlinks
– mv and ln cannot cross fileset boundaries

● Symbolic links can be used
● Filesets and storage pools not specially related
● Quotas: New –j option for GPFS quota commands

– mmdefedquota, mmdefedquotaon, mmdefedquotaoff, mmedquota, mmlsquota, mmquotaoff, mmrepquota

© 2020 Belisama Introduction to GPFS 71

BelisamaFilesets (cont)
● Administration

– Creating: mmcrfileset
• Character string < 256
• Unique within a filesystem
• root is reserved

– Linking: mmlinkfileset (creates the junction)
• Linked to directory
• Linked to other fileset

– Unlinking: mmunlinkfileset
– Changing: Unlinking and linking with a new junction
– Displaying: mmlsfileset

• Shows name, fileset identifier, junction, status, root
inode

● Fileset commands:
– mmchfileset

• Change fileset data
– mmlsfileset

• List filesets and information
– mmunlinkfileset

• Removes a association between a
junction and a fileset

– mmcrfileset
• Creates a fileset definition

– mmdelfileset
• Deletes a filest definition

– mmlinkfileset
• Assings filesets a junction

© 2020 Belisama Introduction to GPFS 72

BelisamaPolicies
 Policy: Set of rules defining the life cycle of user defined data
 Automate management of files using policies and rules

 File placement policies: Where to place newly created files
 File management policies: When to move or delete files

 Automate management of files using policies and rules
 Placement policies

 Rules within a policy file
 One active placement policy at a time
 Can contain any number of rules
 Not larger than 1 MB

 First creation of GPFS Filesystem: System storage pool
 File management policies

 Migration and deletion: mmapplypolicy
 Using a separate management policy file

© 2020 Belisama Introduction to GPFS 73

BelisamaPolicies (cont)

 Example file management rule
 RULE [’rule_name’] SET POOL ’pool_name’

[REPLICATE(data-replication)]
[FOR FILESET(’fileset_name1’,
’fileset_name2’, ...)]
[WHERE SQL_expression]

 Where
 RULE: Initiates with optional rule_name
 SET POOL: Name of the pool to place data on
 REPLICATE: Override replication settings (0,1)
 FOR FILESET: Optional for specific filesets
 WHERE: SQL Expression

 acess_age, file_size, day_of_month, access_time

© 2020 Belisama Introduction to GPFS 74

BelisamaPolicies (cont)

define(stub_size,0)
define(is_premigrated,(MISC_ATTRIBUTES LIKE '%M%' AND KB_ALLOCATED > stub_size))
define(is_migrated,(MISC_ATTRIBUTES LIKE '%M%' AND KB_ALLOCATED == stub_size))
define(access_age,(DAYS(CURRENT_TIMESTAMP) - DAYS(ACCESS_TIME)))
define(mb_allocated,(INTEGER(KB_ALLOCATED / 1024)))
define(exclude_list,(PATH_NAME LIKE '%/.SpaceMan/%' OR
 NAME LIKE '%dsmerror.log%' OR PATH_NAME LIKE '%/.ctdb/%'))
define(weight_expn,(CASE WHEN access_age < 1 THEN 0
 WHEN mb_allocated < 1 THEN access_age
 WHEN is_premigrated THEN mb_allocated * access_age * 10
 END))

RULE defaultmig MIGRATE FROM POOL 'system' THRESHOLD (80,75)
WEIGHT(weight_expn) TO POOL 'hsm' WHERE NOT (exclude_list) AND
NOT (is_migrated)

© 2020 Belisama Introduction to GPFS 75

BelisamaCommands

 Policy commands:
 mmapplypolicy

 Applies and tests policies
 mmchpolicy

 Create and test policies for a filesystem
 mmlspolicy

 List policies and information
 mmrestripefile

 Re-balance files within storage pools or for storage pools

© 2020 Belisama Introduction to GPFS 76

Belisama GPFS features and functions - availability

 Quorum
 Filesystem considerations
 Failure Groups
 Replication
 HA and DR

© 2020 Belisama Introduction to GPFS 77

Belisama HA and DR

 Two servers can not decide between “the other server is down” and “the
communication to the other server is down”

 An independent decision maker is required, e.g.
 Manual operator intervention
 Tie breaker
 Quorum concept: (n/2)+1

 Same is true for mirrored disks: A quorum of disks guarantees the integrity of
filesystem metadata

 High Availability and Disaster Resilience
 It‘s NOT that easy and simple
 The devil is in the detail

© 2020 Belisama Introduction to GPFS 78

BelisamaQuorum

 GPFS quorum = ½ (number of quorum nodes) + 1
 Available since GPFS version 2.2
 Usually the most reliable nodes
 odd number recommended

quorum
non

quorum quorum quorum
non

quorum
non

quorum
non

quorum
non

quorum
Cluster still up

quorum
non

quorum quorum quorum
non

quorum
non

quorum
non

quorum
non

quorum
Cluster down

Quorum = 3, Failed nodes = 5

Quorum = 3, Failed nodes = 3

© 2020 Belisama Introduction to GPFS 79

BelisamaQuorum (cont)

 Managing quorum nodes
 At creation time either specify quroum in node file or at command line:

 mmcrcluster –N myhostname:quorum:myadminlan
 During operations:

 mmchconfig designation=quorum –N nodename
 A quorum node changed to a non-quorum node must have GPFS stopped on it
 Showing current quorum nodes:

 mmlscluster

© 2020 Belisama Introduction to GPFS 80

BelisamaQuorum (cont)

 Tiebreaker disks
 The concept of tiebreaker disks added in GPFS version 2.3 for small clusters
 1 to 3 tiebreaker disks directly attached to the core quorum nodes

quorum non
quorumquorum non

quorum
Cluster still up

SAN

tie
breaker

tie
breaker

tie
breaker

non
quorum

© 2020 Belisama Introduction to GPFS 81

BelisamaQuorum (cont)

 Managing quorum with tiebreaker disks
 Same procedure as before except
 Only two to eight quorum server are allowed
 Tiebreaker disks need to switched on using

mmchconfig tiebreakerDisks=“nsd1;nsd2;nsd3“
 1 -3 disks allowed
 NSD disks
 Separator is ;
 Enclosed in double quotes

 Tiebreaker disks can be switched off using
mmchconfig tiebreakerDisk=no

© 2020 Belisama Introduction to GPFS 82

BelisamaFilesystem quorum
● Node quorum determines if the cluster will remain active
● Filesystem quorum determines if the filesystem will remain mounted

– There is a structure in GPFS called the file system descriptor that is initially written to every disk (NSD) in the file system, but is
replicated on a subset of the disks as changes to the file system occur, such as adding or deleting disks. Based on the number
of failure groups and disks, GPFS creates between one and five replicas of the descriptor:

● If there are at least five different failure groups, five replicas are created.
● If there are at least three different disks, three replicas are created.
● If there are only one or two disks, a replica is created on each disk.
● Once it is decided how many replicas to create, GPFS picks disks to hold the replicas, so that all replicas will be in different

failure groups, if possible, to reduce the risk of multiple failures. In picking replica locations, the current state of the disks is taken
into account. Stopped or suspended disks are avoided.

● Similarly, when a failed disk is brought back online, GPFS may modify the subset to rebalance the file system descriptors across
the failure groups. The subset can be found by issuing the mmlsdisk -L command.

● GPFS requires a majority of the replicas on the subset of disks to remain available to sustain file system operations:
– If there are at least five different failure groups, GPFS will be able to tolerate a loss of two of the five groups. If disks out of three

different failure groups are lost, the file system descriptor may become inaccessible due to the loss of the majority of the replicas.
– If there are at least three different failure groups, GPFS will be able to tolerate a loss of one of the three groups. If disks out of two

different failure groups are lost, the file system descriptor may become inaccessible due to the loss of the majority of the replicas.
– if there are fewer than three failure groups, a loss of one failure group may make the descriptor inaccessible.
– If the subset consists of three disks and there are only two failure groups, one failure group must have two disks and the other

failure group has one. In a scenario that causes one entire failure group to disappear all at once, if the half of the disks that are
unavailable contain the single disk that is part of the subset, everything stays up. The file system descriptor is moved to a new
subset by updating the remaining two copies and writing the update to a new disk added to the subset. But if the downed failure
group contains a majority of the subset, the file system descriptor cannot be updated and the file system will be force unmounted.

© 2020 Belisama Introduction to GPFS 83

BelisamaFailure groups

 disks having the same single point of failure should be assigned to the same failure group
during configuration

Storage Unit 1

SAN

Storage Unit 2

replicate

© 2020 Belisama Introduction to GPFS 84

BelisamaFailure groups (cont)

 Can be defined at creation time
 mmcrnsd –F diskdesc.txt

 Can be changed using mmchdisk
 mmchdisk gpfs1nsd change –d “::::455:::“

 Changing failure groups example
 Changing disks to be in a new failure group

 Can be changed for existing disks
 Can be defined at creation time

%nsd:
nsd=NsdName
usage={dataOnly | metadataOnly | dataAndMetadata | descOnly}
failureGroup=FailureGroup
pool=StoragePool
servers=ServerList (NSDSrv1,NSDSrv2,..(8))
device=DiskName

© 2020 Belisama Introduction to GPFS 85

BelisamaFailure groups (cont)

 Example of system with two failure groups

mmlsdisk gpfs0
disk driver sector failure holds holds storage
name type size group metadata data status availability pool
------------ -------- ------ ------- -------- ----- ------------- ------------ ------------
nsd01 nsd 512 1 yes yes ready up system
nsd02 nsd 512 2 yes yes ready up system

© 2020 Belisama Introduction to GPFS 86

BelisamaReplication

 Replication can be specified at creation time
 mmcrfs /gpfs2 gpfs2 -F /tmp/gpfs2dsk -n 24 -m 2 -M 2 -r 2 -R 2

 To change it later, however the maximum values –M and –R must be set to 2 or 3
when the filesystem was created and cannot be changed
 mmchfs gpfs2 –r 2 –m 2

 It is possible to replicate only certain files
 mmchattr -m 2 -r 2 /fs1/project7.resource

 Verify replication using mmlsfs or mmlsattr

mmlsfs gpfs0
flag value description
---- ---------------- ---
....
 -m 1 Default number of metadata replicas
 -M 2 Maximum number of metadata replicas
 -r 1 Default number of data replicas
 -R 2 Maximum number of data replicas
...

© 2020 Belisama Introduction to GPFS 87

Belisama

Failure group2

DR options

SAN

fd

SAN

fd

SAN SAN

Site A Site C Site B

Failure group1

fd

GPFS replication

fd

storage replication

Active Active

Active Passive

© 2020 Belisama Introduction to GPFS 88

BelisamaGPFS monitoring

 Look at:
 Monitor global system health
 Display disk usage
 Monitor GPFS performance

© 2020 Belisama Introduction to GPFS 89

BelisamaGPFS monitoring
 Global health

 Disk usage

 # mmgetstate -Lsa

 Node number Node name Quorum Nodes up Total nodes GPFS state Remarks
--
 1 ts1 2 3 3 active quorum node
 2 ts2 2 3 3 active quorum node
 3 ts3 2 3 3 active quorum node

 Summary information

Number of nodes defined in the cluster: 3
Number of local nodes active in the cluster: 3
Number of remote nodes joined in this cluster: 0
Number of quorum nodes defined in the cluster: 3
Number of quorum nodes active in the cluster: 3
Quorum = 2, Quorum achieved

mmdf gpfs0 -P goldish
disk disk size failure holds holds free KB free KB
name in KB group metadata data in full blocks in fragments
--------------- ------------- -------- -------- ----- -------------------- -------------------
Disks in storage pool: goldish (Maximum disk size allowed is 12 GB)
sofsnsd3 5242880 -1 no yes 5240704 (100%) 124 (0%)
 ------------- -------------------- -------------------
(pool total) 5242880 5240704 (100%) 124 (0%)

© 2020 Belisama Introduction to GPFS 90

Belisamammpmon
● Different modes

– Up to 5 instances of mmpmon allowed
– I/O mode

● io_s: Shows total IOs
● fs_io_s: Shows IOs for a filesystem
● Filesystem level or node level, output includes:
● Number of disks; time stamp; bytes read and

written; file open, close, read, write; readdir and
inode updates

– Histogram mode
● Specify the size ranges (in bytes of i/o) and

latency in
milliseconds

● Output can be human or “machine”
readable.

mmpmon node 172.2.1.23 name s7801p23 fs_io_s OK
cluster: asguard
filesystem: gpfs1
disks: 4
timestamp: 1121974088/463102
bytes read: 24559
bytes written: 8748
opens: 289
closes: 209
reads: 2668
writes: 146
readdir: 29
inode updates: 22
.....

size range 0 to 255 count 80625
 latency range 0.0 to 1.0 count 1476
 latency range 1.1 to 10.0 count 28445
 latency range 10.1 to 30.0 count 39775
 latency range 30.1 to 100.0 count 10093
 latency range 100.1 to 200.0 count 834
 latency range 200.1 to 0 count 2
 size range 256 to 1023 count 2398875
...

email me for example scripts.

ver
fs_io_s

rhist on
rhist nr 512;1m;4m 1;5;10
rhist off

_fs_io_s_ _n_ 172.16.1.11 _nn_ ts1 _rc_ 0 _t_ 1248761263
 tu 380682 _cl_ sofs151.red.com _fs_ gpfs0 _d_ 3 _br_ 0
bw 0 _oc_ 1029 _cc_ 1029

© 2020 Belisama Introduction to GPFS 91

BelisamaAdministration

● Reminder
– Design test clusters (training? dev?)
– Change control – plan outage windows years in advance, keep detailed change control

records.
– You are managing a cluster (Definition many instances of the operating system that appear

to the end user as the same system).
● GPFS GUI

– Cluster and Storage administration
– Monitoring (pmcollectors and pmsensors)
– Easy to integrate with Grafana / time series database

● Nigel’s tool njmon is has started to collect GPFS metrics as well

© 2020 Belisama Introduction to GPFS 92

BelisamaGPFS tools

● The following tools are provided by IBM (found in /usr/lpp/mmfs/samples)
● Network performance testing

– nsdperf: A simple tool to test network performance under load (no disk access) – better at
handling multiple nodes than

iperf.
● I/O performance

– gpfsperf: A simple tool to measure GPFS performance using several common file access patterns

© 2020 Belisama Introduction to GPFS 93

Belisama GPFS features and functions (cont)

 Snapshots
 Data Management API (DMAPI)
 GPFS and hierarchical storage management (HSM)
 Remote mount capabilities

© 2020 Belisama Introduction to GPFS 94

Belisama GPFS features and functions (cont)

 Creating a snapshot

mmcrsnapshot fs1 snap1
writing dirty data to disk....
quiescing all file system operations..
writing dirty data to disk again..
creating snapshot..
resuming operations...

 Up to 256 outstanding snapshots
(performance impact)

/fs1/file1
/fs1/file2
/fs1/dir1/file3
/fs1/dir1/file4
/fs1/dir1/file5

/fs1/file1
/fs1/file2
/fs1/dir1/file3
/fs1/dir1/file4
/fs1/dir1/file5
/fs1/.snapshots/snap1/file1
/fs1/.snapshots/snap1/file2
/fs1/.snapshots/snap1/dir1/file3
/fs1/.snapshots/snap1/dir1/file4
/fs1/.snapshots/snap1/dir1/file5

Read only copy, only changes to original file use disk space

© 2020 Belisama Introduction to GPFS 95

Belisama GPFS features and functions (cont)

 Snapshot is integration into windows using
Volume Shadow Copy Service

© 2020 Belisama Introduction to GPFS 96

BelisamaGPFS features and functions (cont)

 Flush dirty data
 Quiesce filesystem operations
 Flush dirty data
 Create sparse shadow inode

file
 Add entry to snapshot table in

FS descriptor

FS
Desc

Original
inode file

Shadow
inode file

.......

© 2020 Belisama Introduction to GPFS 97

BelisamaGPFS features and functions (cont)
 Snapshots

– COWOWYHTOROW*
– Can restore from them
– Can snapshot filesets (independant)
– Integrated with mmbackup (only works

with Spectrum Protect)
 Operation

– For most data operations new
snapshot data in GPFS is directed into
new data blocks and pointers are
changed for the version of the file
being modified.

– In the case where less than a GPFS
file system block is modified GPFS
creates a new block and copy over the
unchanged data.

Original
inode file

Shadow
inode file

* copy-on-write-only-when-you-have-to-otherwise-redirect-on-write"

...FileA

FileA’

Modified Modified Copy

Write

Update

Read Operation

Read Operation

......

...
Blocks on disk

Write

© 2020 Belisama Introduction to GPFS 98

Belisama GPFS features and functions (cont)
● The Open Group has defined a standard API that allows to create extensions to existing file

systems
– Data Storage Management (XDSM) API Common Applications Environment (CAE) Specification

C429
– GPFS has implemented this standard except some optional features
– DMAPI for GPFS allows to monitor events associated with a GPFS file system or with an

individual file and to manage and maintain file system data
● The GPFS DMAPI in combination with other products provides

– Hierarchical storage management (in combination with IBM Spectrum Protect for Space
Management, also known as HSM)

● Data Management API (DMAPI) support with HSM
– Files can be migrated to tape storage pool, leaving a stub in the filesystem
– When stub is accessed, a recall is issued.
– GPFS does the scanning

• Example: Rules when file ages, size of file, filesystem fullness etc
● GPFS and hierarchical storage management (HSM)

– Leave stub file on disk
– When accessed, initiates a recall from tape / Cloud storage

$ $ $ or

© 2020 Belisama Introduction to GPFS 99

Belisama GPFS features and functions (cont)

 Remote mount capabilities

SAN SAN

NSD
Client

NSD
Client

Cluster 1 Cluster 2

/gpfs0 /gpfs1/remotesfs/gpfs0

© 2020 Belisama Introduction to GPFS 100

BelisamaGPFS Management

● Spectrum Scale is a fully clustered filesystem with CLI / GUI management tools
– Add and remove nodes
– Add and remove underlying storage
– Add and remove file systems, filesets and pools
– Managing policies
– Perform rolling upgrade through the cluster

● Monitoring and performance metrics
– Monitoring the general health of the cluster, nodes, filesystems and filesets
– Monitoring the health of the hardware and managing call home

© 2020 Belisama Introduction to GPFS 101

BelisamaSome changes in version 5.x

● Core improvements
– worked on performance acceleration via RDMA, enhanced metadata performance, improved the handling of small files (stat

cache) and small file space efficiency.
– Compression has been optimised with support for LZ4 compression (and offload for power). By file, pool, fileset etc
– On Linux startup will detect changes in Kernel and rebuild
– Improvements in LTFS EE integration like optimisation in order to reduce the possibility of recall storms during backups
– mmnetverify now supports remote clusters.
– Now Spectrum Scale uses a lenient round-robin algorithm which makes rebalancing much faster vs the strict round-robin

method used in earlier versions.
– While doing a file system integrity check, if the mmfsck command is running for a long period of time, another instance of

mmfsck can be launched with the –stats-report option to display current status from all the nodes that are running the mmfsck
command.

– Spectrum Scale cluster health check commands have been enhanced with options to verify file system, SMB and NFS nodes.
– The mmcallhome command has a new option ‘–pmr’ which can be used to specify an existing PMR number for data upload.
– Spectrum Scale installation toolkit was introduced with version 4.1 and many enhancements are made in Version 5.0. The

installation kit now supports deploying protocol nodes in a cluster that uses Spectrum Scale Elastic Storage Server (ESS). The
installation toolkit also supports configuring Call Home and File Audit Logging. Deployment of Ubuntu 16.04 LTS nodes as part
of the cluster are also supported by the installation toolkit.

● Security
– Introducing File Audit Logging logs filesystem events to a retention-enabled fileset to track user access to the file systemFile
– Audit logging that was introduced in 5.0 release, now has multi-cluster (remote mount) support and support for IBM System Z.
– Enhanced usability for secure data at rest (encryption)

© 2020 Belisama Introduction to GPFS 102

BelisamaSome further changes in version 5.x

● Watch Folders
– An much awaited feature that providers flexible API which allows programmatic actions to be taken

based on filesystem events. Can be run against directories, filesets, and inode spaces. For Use of
this feature for your use case in production , contact IBM.

● Deployment toolkit
– Designed to simplify GPFS deployments now has support for System Z, Ubuntu 18.04/18.04.1 and

support for file audit logging along with watch folders.
– Improvements in the toolkit for different upgrade scenarios

● Operating systems
– Currency for Ubuntu 18.04.1 kernel support
– Windows 10 Enterprise Edition client support was added.

© 2020 Belisama Introduction to GPFS 103

BelisamaSome further changes in version 5.x

● Protocols
– Dynamic modification of NFS exports and support sor NFSv4 pseudo path
– Improved upgrade support for Object
– Ubuntu support for protocol nodes (NFS/SMB/Object)

● Management GUI
– Enhancement to manage/configure AFM & TCT
– Network monitoring for both IP and RDMA transports
– Upload diagnostic data to a PMR automatically, etc.
– includes quota and capacity monitoring of remote clusters, ability to enable/disable File audit logging and security

fixes which includes logging off of users on change of passwords or roles, etc.
● REST API

– Expanded REST API for Performance data collection, threshold management, snap creation, addition/removal of
nodes from cluster.

– Support for change and retrieval of SMB ACL and Configuration/ management of File audit logging.
● Big Data and Analytics

– Certification with HortonWorks Data Platorm 2.6 (5.0) and in 5.02 there is support for Hortonworks Data Platform 3.0
and Management Pack 2.7.0.0, Support for Apache Hadoop 3.0.x, Support for native HDFS encryption and
improvements in FPO based setup for scanning of inconsistent replicas.

● Transparent Cloud Tiering
– Remote mounted filesystem support, tier different fileset to different cloud containers, enhanced support for multiple

cloud accounts and containers.

© 2020 Belisama Introduction to GPFS 104

BelisamaNew features
 AFM

 Data sharing - GPFS includes active file management, which is a scalable, high-performance remote file data
caching solution that is integrated within a GPFS file system. If you have a situation where massive amounts
of data is gathered at separate locations and the results are analysed by people at other locations, you need
a solution that makes it possible to transparently move file data automatically to where it is needed.

 This is especially useful for collaborative projects, applications and workflows that are managed globally, but
need to have access to the same files.

 GPFS Raid
 Greater throughput; faster rebuild times; end to end checksum

 GPFS File Placement Optimisation
 GPFS Shared nothing clusters

 High Performance Extended Attributes
 GPFS has long supported the use of extended attributes, though in the past they were not commonly used, in

part because of performance concerns. In GPFS 3.4, a comprehensive redesign of the extended attributes
support infrastructure was implemented, resulting in significant performance improvements. In GPFS 3.5,
extended attributes are accessible by the GPFS policy engine allowing you to write rules that utilise your
custom file attributes.

 Now an application can use standard POSIX interfaces to manage extended attributes and the GPFS policy
engine can utilise these attributes.

© 2020 Belisama Introduction to GPFS 105

BelisamaGPFS Active File Management

 When GPFS was introduced in 1998 it represented a revolution in file storage. For the first
time a group of servers could share high performance access to a common set of data over
a SAN or network. The ability to share high performance access to file data across nodes
was the introduction of the global namespace.

 Later GPFS introduced the ability to share data across multiple GPFS clusters. This multi-
cluster capability enabled data sharing between clusters allowing for better access to file
data. This further expanded the reach of the global namespace from within a cluster to
across clusters spanning a data centre or a country.

 There were still challenges to building a multi-cluster global namespace. The big challenge is
working with unreliable and high latency network connections between the servers. Active
File Management(AFM) in GPFS addresses the WAN bandwidth issues and enables GPFS
to create a world-wide global namespace. AFM ties the global namespace together
asynchronously providing local read and write performance with automated namespace
management. It allows you to create associations between GPFS clusters and define the
location and flow of file data.

© 2020 Belisama Introduction to GPFS 106

BelisamaAFM Improvements in 5

● Support for File Compression for AFM and AFM DR filesets
● Load balancing enhancements
● ILM support for snapshots for AFM and AFM DR filesets
● AFM enhancements to modify gateway nodes for a fileset
● AFM pre-fetch option enhancements and read-only AFM relationships using read-only NFS

exports

© 2020 Belisama Introduction to GPFS 107

BelisamaWhat is Active File Management (was Panache)

GPFS introduced
concurrent file system
access from multiple nodes.

Multi-cluster expands the
global namespace by connecting
multiple sites

1993

2005

2012

 AFM takes global namespace truly global by automatically
managing asynchronous replication of data

 If data is in cache …
 Cache hit at local disk speeds
 Client sees local GPFS performance

 if file or directory is in cache
 If data not in cache …

 Data and metadata (files and directories) pulled
on-demand at network line speed and written to GPFS

 Uses NFS/pNFS for WAN data transfer

© 2020 Belisama Introduction to GPFS 108

BelisamaGlobal namespace with AFM Cache
Clients access:

/global/data1
/global/data2
/global/data3
/global/data4
/global/data5
/global/data6

File system: store1
/data1
/data2

Cached filesets

Local filesets

/data5
/data6

/data3
/data4

Clients access:
/global/data1
/global/data2
/global/data3
/global/data4
/global/data5
/global/data6

File system: store2
/data1
/data2

/data5
/data6

/data3
/data4

Clients access:
/global/data1
/global/data2
/global/data3
/global/data4
/global/data5
/global/data6

File system: store3
/data1
/data2

/data5
/data6

/data3
/data4

 See all data from any cluster
 Cache as much data as required

 or fetch data on demand

© 2020 Belisama Introduction to GPFS 109

BelisamaMigrate data into GPFS using AFM

/data

/data

● You can use AFM to migrate data from an NFS source into a Spectrum Scale file system.
There are two options:
– Local-update (LU)

● doesn’t push changes back to the home file system, therefore no easy roll back
● Using local-update data is read from the Home (original) and copied into the cache fileset on

demand or using prefetch. You can move active users over before all of the data is prefetched but
you need to prefetch the metadata before cutting over completely.

– Independant-writer (IW)
● Keeps data in the original file system up to date (therefore additional IO)
● Migrating data using Independent-writer (IW) mode makes sense if you have the bandwidth to push

changes (after application cut-over) to Home. Using independent-writer data is read from the Home
(target) and copied into the cache fileset on demand or using prefetch. You can move active users
over before all of the data is prefetched . With IW mode you do not have to prefetch the metadata
before cutting over the application and you can fail-back at any time. If you do fail-back to the Home
I suggest issuing a flushpending (and waiting for it to complete) before failing-back so changes
made in the cache are not missed at the Home.

Old file system (NFS Export)

GPFS AFM Cache Fileset

© 2020 Belisama Introduction to GPFS 110

BelisamaWhy GPFS Native Raid
 When building a cluster with multiple pods – slow rebuild of one pod, will affect performance of

not only that pod but whole filesystem (as reads / writes spread across all pods)
 Disks bigger, takes longer to rebuild
 With such a large number of disks, likelihood of failure greater
 Silent data corruption also more common
 What we achieve:

 Stack from application / gpfs / raid controller / disk to application / gpfs+raid controller / disk
 De-clustered array removes rebuild, but also has end to end checksum to protect against data

corruption. Silent (phantom) errors – Not media errors, these the disk can tell you that there is an
error, for silent errors, it doesn't know.

 Far or near off-track writes (vibration / thermal, head misses), dropped writes, Head doesn't check at
time of writing. Only see affect at time of reading. Also have undetected read errors.

 Almaden estimate 1000 disk system will experience 1 error every 5 years
 Read block – gives A – good, but if read B – problem (no data better than bad data)

 We now attach a checksum to data, so we can check data, but this will not check dropped writes (as
old data will match the checksum). To protect against this, we put the checksum at a different location
(use version number and checksum)

 We are a RAID controller – so need to as well as rebuild, rebalance, scrub and control the scheduling
of these operations (setting rate on criticality of the rebuild etc)

© 2020 Belisama Introduction to GPFS 111

BelisamaDe-clustered RAID example

 3 fault tolerant mirrored groups (RAID 1)
 7 stripes per group
 2 strips per stripe

7 disks

spare disk

De-clustered Raid

3 groups of 6 disks 49 strips

© 2020 Belisama Introduction to GPFS 112

BelisamaDe-clustered RAID Example

© 2020 Belisama Introduction to GPFS 113

BelisamaDe-clustered RAID example

Failed disk Failed disk

© 2020 Belisama Introduction to GPFS 114

BelisamaDe-clustered RAID example

Failed disk Failed disk

time

Read Write

time

Reads - Writes

Rebuild activity confined to just a few disks
 – slow rebuild, disrupts user programmes

Rebuild activity spread across many disks,
less disruption to user programmes

© 2020 Belisama Introduction to GPFS 115

BelisamaDe-clustering – parallelism applied to spinning disks

 Conventional RAID: Narrow data+parity arrays
 Rebuild can only use the IO capacity of 4 (surviving) disks

Declustered RAID: Data+parity distributed over all disks
 Rebuild can use the IO capacity of all 19 (surviving) disks

20 disks (5 disks per 4 conventional RAID arrays)

Striping across all arrays,
all file accesses are throttled
by array 2’s rebuild
overhead.

Failed disk

Load on files accesses
are reduced by 4.8x(=19/4)
during array rebuild.

20 disks in one de-clustered raid array

Failed disk

4x4 RAID stripes
(data plus parity)

16 RAID stripes
(data plus parity)

© 2020 Belisama Introduction to GPFS 116

BelisamaDe-clustered RAID 6 example

Failed disks

14 disks / 3 traditional RAID6 arrays / 2 spares 14 disks / 1 de-clustered RAID6 array / 2 spares

Number of failures per stripe

Red Green Blue

2

2

2

2

2

2

2

7 stripes with 2 faults

Failed disks

Number of failures per stripe

Red Green Blue

1 1

1 1

1 1

2

1

1

1 1

1 stripe with 2 faults

© 2020 Belisama Introduction to GPFS 117

BelisamaReference
 Internal Links

– GPFS FAQ
• http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.

gpfs.doc/gpfs_faqs/gpfs_faqs.html
– Todd's site

• http://pokgsa.ibm.com/home/t/o/toddnev/web/
– Developer wiki

• http://gpfs.almaden.ibm.com/
 External web site

– http://www-03.ibm.com/systems/clusters/software/gpfs/index.html
 IBM AIX sites, Firmware

– supportsite.wss/brandmain?brandind=5000025
 Tools

– Fix Level Recommendation Tool
• http://www14.software.ibm.com/webapp/set2/flrt/home

– IBM Pre-req tool
• compare_report and subscription services

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfs_faqs.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfs_faqs.html
http://pokgsa.ibm.com/home/t/o/toddnev/web/
http://gpfs.almaden.ibm.com/
http://www-03.ibm.com/systems/clusters/software/gpfs/index.html

© 2020 Belisama Introduction to GPFS 118

BelisamaReference
 Redbooks

 Implementing the IBM General Parallel File System (GPFS) in a Cross Platform Environment,
SG24-7844-00

 GPFS in the Cloud: Storage Virtualization with NPIV on IBM System p and IBM System Storage
DS5300, REDP-4682-00

 Deploying Oracle 10g RAC on AIX V5 with GPFS, SG24-7541-00
 A Deployment Guide for Elastic Storage Object, REDP-5113-01
 A Guide to the IBM Clustered Network File System, REDP-4400-01
 IBM Spectrum Scale Best Practices for Genomics Medicine Workloads, April 2018, REDP-5479-01

 Useful youtube links:
 GPFS GNR: https://www.youtube.com/watch?v=VvIgjVYPc_U

https://www.youtube.com/watch?v=VvIgjVYPc_U

© 2020 Belisama 119

Belisama

For further information….
Contact:

Antony (Red) Steel antony.steel@belisama.com.sg
+65 9789 6663

Thanks!
Questions ?

?

Session: s111035
Introduction to GPFS

Your feedback about this session is very important to us.

Please remember to submit a survey

mailto:antony.steel@belisama.com.sg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119

