
1 Trusted Execution

1.1 Background
Security of a system is multifaceted issue and requires different tools and frameworks to manage
the threats. Some of the security mechanisms provide for protection against attacks (e.g.: network
traffic monitoring for attacks and taking defensive actions), and some provide active monitoring
against any successful attacks and the ability to denying the attacker of powers, privileges and data
access (for example, Encrypting data, stop execution of unauthorised code, etc.).

It is necessary that the system administrator be able to verify at any point in time that the system has
not been compromised. Additionally it is required that system integrity mechanism provides means
to spoil attempts by the attacker to compromise the baseline system integrity information itself. To
summarise the requirements for a good system integrity function:

• Integrity Measurement: Provide administrator to detect changes to the system. The changes
are identified by comparing the current state to a well known previous state (also called as
the baseline).

• Lock down: Provide means to administrator to lock down the information established as
baseline. This lock down will prevent an intruder from modifying the state of the system and
the recorded Baseline so that the admin will not be able to detect these modifications.

• Monitor and Protect: Provide means to monitor executions of executables, libraries, kernel
extensions etc.

Trusted Execution (TE) is an AIX in-built security feature for maintaining the integrity of files and
executables on the system. By default, AIX ships a database of system files with their trusted
signatures. TE checks any deviation from these signatures and reports it as an integrity breach.

The AIX Trusted Execution (TE) feature will be used for integrity check of critical files. TE can be
used in offline mode or online mode or both. It is usually recommended to initially use TE in offline
mode and after monitoring turn it online (See figure 1).

Page 1 of 23

Figure 1

To check the integrity of system against the Trusted Signature Database (TSD) use the trustchk
command. This is also called running a system integrity check. The trustchk command can be
used to audit the integrity state of the file definitions in the TSD against the actual files. It is
recommended that this is done periodically (automated by cron, or run manually). It is
recommended that the periodic audit will use the tree option (See section 1.2 - Trusted Execution –
audit)

The following files will be audited TE:

Server File Names

All Default entries in TSD

Customer to
provide

Examples:
• BPM?
• Web Server with DB2
• BigFix

The following TE policies will be enforced:

Page 2 of 23

Application Loader subsystem (kernel) TE subsystem (kernel)

exec (0) Loader invokes
TE verification

Compute the
has of the file

Load the file

Return failure

exec () fails
with EPERM

Compare
the hash with

TSD value

. .

Policy Description Value
(ON / OFF)

TE Enables or disables Trusted
Execution. All other policies can
only be activated if TE is set to
ON

ON (and only turned off for
patching or upgrades)

CHKEXEC Checks the integrity of
executable files that belong to
the TSD before starting them

ON

CHKSCRIPT Checks the integrity of shell
scripts that belong to the TSD
before starting them

ON

CHKKERNEXT Checks the integrity of the
kernel extensions that belong to
the TSD before loading them

ON

CHKSHLIB Checks the integrity of shared
libraries that belong to the TSD
before loading them

ON

LOCK_KERN_POLICIES If this policy is enabled, then all
other policies will be locked.
Reboot is required to change
this policy

OFF

STOP_ON_CHKFAIL Stops the loading of files whose
integrity check fails

OFF until review of all
application
binaries/libraries/scripts
completed

STOP_UNTRUSTD Stops the loading of files that
are not in the TSD.

TROJAN: This will stop loading
of files that are not in the TSD
AND files that match the
properties of a trojan file (See
below)

OFF until review of all
application
binaries/libraries/scripts
completed.

TEP Sets the value of Trusted
Execution path, and enables or
disables it. When this policy is
enabled, the files belonging to
only these directory paths are
allowed to be started

OFF

Page 3 of 23

Policy Description Value
(ON / OFF)

TLP Sets the value of Trusted Library
path, and enables or disables it.
When this policy is enabled, the
libraries belonging to only these
directory paths can be loaded

OFF

TSD_LOCK Disallows opening of a TSD file
(/etc/security/tsd/tsd.dat) in
write mode to disable editing of
the TSD.

OFF

TSD_FILES_LOCK Disables opening of files
belonging to the TSD in write
mode.
WARNING: This means that
files defined as VOLATILE
cannot be modifed.

EXVOL: Disables the opening
of only the nonvolatile files that
belong to the TSD in write
mode. The volatile files can be
changed.

OFF

For example
trustchk -p tep
TEP=OFF
TEP=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/sbin/helpers/jfs2:/usr/
lib/instl:/usr/ccs/bin:/usr/lib:/usr/lib/security:/etc/security
trustchk -p tlp
TLP=OFF
TLP=/usr/lib:/usr/ccs/lib:/lib:/var/lib:/usr/lib/drivers:/usr/lib/
security:/usr/lib/nls/loc

1.2 Trusted Execution – audit

As before we suggest that a periodical integrity check (trustchk -n ALL) will be run as a cron
job and the output will be stored in the log directory under [TBD] directory.

Note: -n Specifies the auditing mode, and indicates that the errors are to be reported. Any
discrepancy between the attributes in the TSD and the actual file parameters are printed to
the stderr. error file.
To check all of the entries in the TSD, use the “ALL” parameter.

Page 4 of 23

To scan the entire system or directories for TROJAN detection, use with tree parameter.

The following can be configured in cron
0 15 0 0 0 /usr/sbin/trustchk -n all

Example of running an audit:
trustchk -n ALL
trustchk: /etc/security/rtc/rtcd.conf: Verification of attributes
failed: mode
trustchk: /var/adm/cron/cron.deny: Verification of attributes
failed: owner group
trustchk: /usr/bin/rexec: Verification of attributes failed: mode
trustchk: /usr/bin/rdist: Verification of attributes failed: mode

Finding trojan horses
The trustchk command can also be used to scan the system for any executables that are not part of
the TSD, but suspect from a privilege escalation point of view. Files will be reported as suspect if
they:

• Have setuid or setgid set, owner root or group security, but not in the TSD
• Are owned by root and not in the TSD
• Are a privileged command (RBAC) and not in the TSD
• Are a symbolic link to a privileged command (RBAC) and not in the TSD

You can also block the execution of files that match these properties by setting
STOP_UNTRUSTD=TROJAN.

1.3 How to configure TE policies:
To check TSD protection, run:

trustchk -p
TE=ON
CHKEXEC=ON
CHKSHLIB=OFF
CHKSCRIPT=ON
CHKKERNEXT=ON
STOP_UNTRUSTD=OFF
STOP_ON_CHKFAIL=OFF
LOCK_KERN_POLICIES=OFF
TSD_FILES_LOCK=OFF
TSD_LOCK=OFF
TEP=OFF
TLP=OFF

To enable TSD protection, run:

trustchk -p TSD_LOCK=ON TE=ON

Page 5 of 23

Note: trustchk -p tsd_lock=on te=on, works as well, ie case insensitive

Once the TSD has been configured it is vital that it is secured – this can be done by using a
centralised copy (LDAP) or configuring TSD_LOCK=ON. A backup copy of the TSD can be made
to a secure location and then used for integrity checking as follows:

trustchk -F <my_tsd_copy> -n ALL

1.4 How to add non IBM supplied binary to the TSD
You can add your own binaries to the TSD to extend the auditing and control of TE. All that is
required is to set up a private key and a certificate, which can be used to generate the checksums for
the TSD.

As openssl creates its keys and certificates in privacy enhanced mail security certificate (PEM)
format, they need to converted into ASN.1/PKCS8/DER (distinguished encoding rules) format to
become usable for TE. This can be quickly done by using the following commands:

First generate a 2048-bit private key in PEM format.

openssl genrsa -out TEprivkey.pem 2048

Then create the public key and certificate that lasts approximately ten years:

openssl req -new -x509 -key TEprivkey.pem -outform DER -out
TEcert.der -days 3650

Then convert the private key from PEM into DER format

openssl pkcs8 -inform PEM -in TEprivkey.pem -topk8 -nocrypt -
outform DER -out TEprivkey.der

After the conversion, the private key in PEM format is no longer needed. You only need privkey.der
and cert.der for the following examples. Now you can add any file you would like to the TSD by
simply issuing:

trustchk -s TEprivkey.der -v TEcert.der -a /path/to/binary

Note: It is not possible to modify an existing entry in the TSD if the binary is changed. The
record needs to be deleted then recreated.

For example
trustchk -d /path/to/binary

Page 6 of 23

trustchk -s privkey.der -v cert.der -a /path/to/binary

To add a file as a volatile file to the TSD using same pair of private key and certificate in the
previous example, enter the following command:

trustchk -s privkey.der -v cert.der -a /path/to/binary
size=VOLATILE

Or if file already in TSD

trustchk –a my_textfile size=VOLATILE

Note: As the hash value of a volatile file is not checked, there is no need to provide keys

Warning: If TSD_FILES_LOCK policy is set on, then modifications to “VOLATILE” files is not
allowed.

To check the integrity of a command (for example /usr/bin/mv)

trustchk -q /usr/bin/mv
/usr/bin/mv:
 owner = bin
 group = bin
 mode = 555
 type = FILE
 hardlinks =
 symlinks =
 size = 22332
 cert_tag = 49424d4149583a31324331342d33314332303a324b3a41
 signature =
7fbb9f9275d599d281cc54fbe2b46001621bf3c279f69cc353b631ee00c13f202a
aafc4e9619bfde25f5e416e9121ace222400c607ad61c5372b75dccfd91ae601c6
5a0c205fb57cdfb8e466f4ba9c79ad056fd7d6c813882cdb85759e91b8b9b37560
bd22efcd2dcde0c27d2e0061386906c44d622fdf851e73b6eaf8857de302ef22dd
ee32ea78f185d9d6d47a97819e5c5890fed90e86576356d8d5531f70d11d58b05b
f32b3edad4ef3b5c65089ceaa0e0264f17993205e57d07561c24c578b7b354c5b2
35750fbe371d1fb2b01ded811dc1c967d56b43d1de7c3f0985a21d7c63f51207ee
92754ab70d4f37534367c49bdffcb2b22f28d27b97b0fb4187
 hash_value =
fee1e43033ffd5d3e242f2059be8146c5ffdbe751335ffed1b71b815a1a15dd1
 minslabel =
 maxslabel =
 intlabel =
 accessauths =
 innateprivs =
 inheritprivs =
 authprivs =
 secflags =

Page 7 of 23

1.5 Adding TE messages to syslog

Add the following entry to syslogd.conf, create the file and refresh syslogd

kern.debug <te_out_file>

Example entries

Mar 5 03:55:01 aix-72 kern:info unix: Trusted Execution:
pid=11600228, euid=0, ruid=0: File not in TSD: /usr/bin/lsred
Mar 5 03:55:01 aix-72 kern:err|error unix: Trusted Execution:
pid=11600228, euid=0, ruid=0: Crypto hash verification failed:
/usr/bin/lsred
Mar 5 03:55:20 aix-72 kern:info unix: Trusted Execution:
pid=11600234, euid=0, ruid=0: File not in TSD: /usr/bin/lsred

1.6 Using the AIX Audit system
Auditing can be configured in either of two modes (bin or streams). For the purpose of this
example, we will use streams.

The following events are defined in /etc/security/audit/events:
• TSDTPolicy
• TE_Untrusted
• TE_FileWrite

in /etc/security/config:
Create a new class

my_te = TSDTPolicy,TE_Untrusted,TE_FileWrite

Assign class to user
root = my_te

Examples of streams report

Base report - /usr/sbin/auditstream | auditpr
event login status time command wpar name
--------------- -------- ----------- ------------------------ -------------------------------

S_PASSWD_READ root OK Tue Jun 15 23:48:24 2021 sshd Global
TSDTPolicy root OK Tue Jun 15 23:48:32 2021 trustchk Global
TSDTPolicy root OK Tue Jun 15 23:48:32 2021 trustchk Global
TSDTPolicy root OK Tue Jun 15 23:48:34 2021 trustchk Global

Base report with details - /usr/sbin/auditstream | auditpr -v
event login status time command wpar name

Page 8 of 23

--------------- -------- ----------- ------------------------ -------------------------------

TSDTPolicy root OK Tue Jun 15 23:53:01 2021 trustchk Global
 TE set
TSDTPolicy root OK Tue Jun 15 23:53:01 2021 trustchk Global
 TE set
TSDTPolicy root OK Tue Jun 15 23:53:03 2021 trustchk Global
 TE policy reset

Using /usr/sbin/auditstream | auditpr -h elrRtc -w
event login real status time command
--------------- -------- -------- ----------- ------------------------ -------------------------------
TSDTPolicy root root OK Tue Jun 15 23:14:41 2021 trustchk TE set
TSDTPolicy root root OK Tue Jun 15 23:14:41 2021 trustchk TE set
TSDTPolicy root root OK Tue Jun 15 23:14:43 2021 trustchk TE policy reset
TSDTPolicy red root OK Tue Jun 15 23:15:25 2021 trustchk TE set
TSDTPolicy red root OK Tue Jun 15 23:15:25 2021 trustchk TE set
TSDTPolicy red root OK Tue Jun 15 23:15:27 2021 trustchk TE policy reset

1.7 Steps to forward auditing to syslog daemon
Simple steps to redirect AIX Audit stream to syslog, which can either write to a local file, forward
to a central syslog server, or both.
Steps

1. Configure the /etc/syslog.conf file:
You will need to configure the facilty, priority and destination. In this example we will use
the “local6” facility with priority of “notice” and send to a local file.
For example:

local6.notice /data/red/syslog_te.out rotate size 2m files 4 time 1w
Which will sent the information to file /data/red/syslog_te.out, rotating every 2m or 1w
(which ever comes first) across 4 files.
If you wanted to send to central syslog server, you can use:

local6.notice @my_syslog_server
You will now need to create the file and refresh the syslogd daemon

2. Configure /etc/security/audit/config:
As above confirm that streams mode is turned on
Check the location of your streamcmds file (by default /etc/security/audit/streamcmds)

3. Modify the streamcmds file as:
/usr/sbin/auditstream | /usr/sbin/auditselect -m -e "command !=
logger && command != auditstream && command != auditpr && command !=
auditselect"|auditpr -t0 -h eclrRdt -w | /usr/bin/logger -p
local6.notice -r &

Which will:
• Read events from the audit subsystem and pass them to the auditselect command
• The auditselect command will filter out commands generated by the streams pipeline

itself
• Run the auditpr command as seen in the example in section above, to format it they

way we want
• Send it to syslogd subsystem on the local6 facilty with an severity of notice
• Uses -r flag to retry any messages dropped by syslog daemon until they are accepted.
• And (&!) keep running in the background

Page 9 of 23

1.8 Enabling TSD Protection
To enable TSD protection, run:

trustchk -p tsd_lock=on
trustchk -p te=on

The TSD is immediately protected against any kind of modification then. Neither trustchk
Nor a manual edit of the file is possible:

trustchk -d /usr/bin/ps
Error writing to database file

and

echo >> /etc/security/tsd/tsd.dat
Operation not permitted.

To enable the TSD for write access again, you either need to switch off TE Completely or set
tsd_lock to off. Either way, you need to reboot in order to have this change become active
immediately:

trustchk -p te=off
Policy in use. Changes applicable on next boot only

It is generally a good idea to save the TSD in a secure immutable place, so that regular checks
against the system TSD can be run.

1.9 Trusting shell scripts

When blocking any untrusted shell scripts by using the CHKSCRIPT policy, make sure all scripts
needed by your services are included in the TSD. For example, if you are using OpenSSH, make
sure the Ssshd and Ksshd start and stop Scripts in /etc/rc.d/rc2.d are in the TSD. Otherwise, sshd
will not get started upon reboot and not be shut down on a system shutdown:

trustchk -p stop_untrustd=on
trustchk -p chkscript=on

When trying to start a script with chkscript=on and that script is not included in the TSD, its
execution will be denied, regardless of its permissions, even when root is invoking it:

./my_test

Page 10 of 23

ksh: ./my_test: 0403-006 Execute permission denied.

ls -l my_test
-rwx------- root system 17 May 10 11:51 my_test

1.10 Trusted Execution Path

The Trusted Execution Path (TEP) defines a list of directories that contain the trusted executables.
Once TEP verification is enabled, the system loader allows only binaries in the specified paths to
execute.

For example:

trustchk -p tep
TEP=OFF
TEP=/usr/bin:/usr/sbin

trustchk -p
tep=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/usr/lib/instl:/usr/ccs/bin

trustchk -p tep
TEP=OFF
TEP=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/usr/lib/instl:/usr/ccs/bin

trustchk -p tep=on

trustchk -p tep
TEP=ON
TEP=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/usr/lib/instl:/usr/ccs/bin

1.11 Trusted Library Path

The Trusted Library Path (TLP) has the same functionality as TEP with the only difference that it is
used to define the directories that contain trusted libraries of the system. Once TLP is enabled, the
system loader will allow only the libraries from this path to be linked to the binaries.

The trustchk command can be used to enable/disable the TEP/TLP as well as to set the colon-
separated path list for oth using TEP and TLP command-line attributes of trustchk:

trustchk -p tlp
TLP=OFF
TLP=/usr/lib:/usr/ccs/lib:/lib:/var/lib

Page 11 of 23

TLP uses a flag to control its operations: FSF_TLIB. If the file has the FSF_TLIB flag set in its
TSD stanza, then the process resulting from it will be set as a TLIB process.
Processes marked as TLIB processes can link only to *.so libraries that also have the TLIB flag set.

Note: Note: Be careful when changing either TEP or TLP. We do not recommend removing
paths from their Default settings, which are currently set to:
TEP=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/sbin/helpers/jfs2:/usr/lib/instl:/usr/ccs/bin
TLP=/usr/lib:/usr/ccs/lib:/lib:/var/lib

Doing so will most probably result in a system that will not reboot and function properly
since it cannot access necessary files and data any longer.

1.12 Short examples
Perform a system check comparison with the TSD and report errors:

trustchk -n ALL

Note: -n Specifies the auditing mode, and indicates that the errors are to be reported. Any
discrepancy between the attributes in the TSD and the actual file parameters are printed to
the stderr. error file. To check all of the entries in the TSD, use the ALL parameter. To scan
the entire system or directories for TROJAN detection, use with tree parameter.

Delete the entry for /usr/bin/ls in the TSD:

trustchk -d /usr/bin/ls

Enable policy for checking executables listed in TSD on every load:

trustchk -p CHKEXEC=ON

Turn on Run-time TSD checking:

trustchk -p TE=ON

Check the current run-time policy in effect:

trustchk -p

Checking the hash

trustchk -q /usr/bin/mv | grep hash

Page 12 of 23

 hash_value =
fee1e43033ffd5d3e242f2059be8146c5ffdbe751335ffed1b71b815a1a15dd1
openssl dgst -sha256 /usr/bin/mv
SHA256(/usr/bin/mv)=
fee1e43033ffd5d3e242f2059be8146c5ffdbe751335ffed1b71b815a1a15dd1

Disabling a file if compromised

Test: Change a file for testing (/usr/bin/ls)
trustchk -y /usr/bin/ls
trustchk: Verification of attributes failed: owner
trustchk: Verification of attributes failed: group
trustchk: Verification of attributes failed: modetrustchk:
Verification of attributes failed: size
trustchk: Verification of attributes failed: hash
trustchk: Verification of attributes failed: signature
trustchk: Verification of stanza failed:
Check file:
ls -l /usr/bin/ls
---------T 1 bin bin 93 May 28 16:07 /usr/bin/ls

1.13 Files
The following files are in /etc/security/tsd:

tsd.dat and .tsd.bk TSD file and backup
ldap/tspolicies.dat Policy control with LDAP
lib/lib.tsd.dat and .lib.tsd.bk Library TSD and backup
tepolicies.dat Current TSD settings

Maintenance notes
Note:

1. Installing updates (non AIX) naturally changes the files as hashes in the TE database will be
modified.

2. AIX updates come with new signatures, so need to update hashes for own files.

1.14 Third party tools - XYMON
https://xymon.sourceforge.io/

MSGS STATUS COLUMN SETTINGS
LOG logfilename pattern [COLOR=color] [IGNORE=excludepattern] [OPTIONAL]

The Xymon client extracts interesting lines from one or more logfiles - see the client-local.cfg(5)
man-page for information about how to configure which logs a client should look at.

Page 13 of 23

The LOG setting determine how these extracts of log entries are processed, and what warnings or
alerts trigger as a result.

"logfilename" is the name of the logfile. Only logentries from this filename will be matched against
this rule. Note that "logfilename" can be a regular expression (if prefixed with a '%' character).

"pattern" is a string or regular expression. If the logfile data matches "pattern", it will trigger the
"msgs" column to change color. If no "color" parameter is present, the default is to go "red" when
the pattern is matched. To match against a regular expression, "pattern" must begin with a '%' sign -
e.g "%WARNING|NOTICE" will match any lines containing either of these two words. Note that
Xymon defaults to case-insensitive pattern matching; if that is not what you want, put "(?-i)"
between the "%" and the regular expression to turn this off. E.g. "%(?-i)WARNING" will match the
word WARNING only when it is upper-case.

"excludepattern" is a string or regular expression that can be used to filter out any unwanted strings
that happen to match "pattern".

The OPTIONAL keyword causes the check to be skipped if the logfile does not exist.

Example: Trigger a red alert when the string "ERROR" appears in the "/var/adm/syslog" file:
LOG /var/adm/syslog ERROR

Example: Trigger a yellow warning on all occurrences of the word "WARNING" or "NOTICE" in
the "daemon.log" file, except those from the "lpr" system:

LOG /var/log/daemon.log %WARNING|NOTICE COLOR=yellow IGNORE=lpr
Defaults:

color="red", no "excludepattern".

Note: That no logfiles are checked by default. Any log data reported by a client will just show up
on the "msgs" column with status OK (green).

Page 14 of 23

2 Trusted Signature Database

Similar to that of Trusted Computing Base (TCB) there exists a database which is used to store
critical security parameters of trusted files present on the system. This database, called Trusted
Signature Database (TSD), resides in the /etc/security/tsd/tsd.dat.

A trusted file is a file that is critical from the security perspective of the system, and if
compromised, can jeopardise the security of the entire system. Typically the files that match this
description are the following:

• Kernel (operating system)
• All setuid root programs
• All setgid root programs
• Any program that is exclusively run by the root user or by a member of the system group
• Any program that must be run by the administrator while on the trusted communication path

(for example, the ls command)
• The configuration files that control system operation
• Any program that is run with the privilege or access rights to alter the kernel or the system

configuration files
Every trusted file should ideally have an associated stanza or a file definition stored in the Trusted
Signature Database (TSD). A file can be marked as trusted by adding its definition in the TSD using
the trustchk command. The trustchk command can be used to add, delete, or list entries from the
TSD.

2.1 Location of the TSD
Local
The Trusted Signature Database is a database that is used to store critical security parameters
of trusted files present on the system. This database resides in the /etc/security/tsd/tsd.dat
directory.
Remote
Centralised Trusted Signature Database (TSD) policies and Trusted Execution (TE) policies
can be implemented in your system environment by storing them in LDAP.

2.2 Details of the TSD
The Trusted Signature Database is a database that is used to store critical security parameters of
trusted files present on the system. This database resides in the /etc/security/tsd/tsd.dat directory.

Every trusted file must ideally have an associated stanza or a file definition stored in the Trusted
Signature Database (TSD). Every trusted file is associated with a unique cryptographic hash and a
digital signature. The cryptographic hash of the default set of trusted files is generated by using the

Page 15 of 23

SHA-256 algorithm and the digital signature that is generated by using RSA by the AIX® build
environment and packaged as part of AIX installation filesets. These hash values and the signatures
are shipped as part of respective AIX installation images and stored in the Trusted Signature
Database (/etc/security/tsd/tsd.dat) on the destination machine, in the sample stanza format that
follows:

/usr/bin/ps:
 owner = bin
 group = system
 mode = 555
 type = FILE
 hardlinks = /usr/sbin/ps
 symlinks =
 size = 1024
 cert_tag = bbe21b795c550ab243
 signature =
f7167eb9ba3b63478793c635fc991c7e9663365b2c238411d24c2a8a
 hash_value = c550ab2436792256b4846a8d0dc448fc45
 minslabel = SLSL
 maxslabel = SLSL
 intlabel = SHTL
 accessauths = aix.mls.pdir, aix.mls.config
 innateprivs = PV_LEF
 proxyprivs = PV_DAC
 authprivs =
aix.security.cmds:PV_DAC,aix.ras.audit:PV_AU_ADMIN
 secflags = FSF_EPS
 t_accessauths =
 t_innateprivs =
 t_proxyprivs =
 t_authprivs =
 t_secflags =

owner
Owner of the file. This value is computed by the trustchk command when the file is
being added to TSD.

group
Group of the file. This value is computed by the trustchk command.

mode
Comma-separated list of values. The permissible values are SUID (SUID set bit),
SGID (SGID set bit), SVTX (SVTX set bit), and TCB (Trusted Computing Base).
The file permissions must be the last value and can be specified as an octal value. For
example, for a file that is set with uid and has permission bits as rwxr-xr-x, the value
for mode is SUID, 755. The value is computed by the trustchk command.

type
Type of the file. This value is computed by the trustchk command. The possible
values are FILE, DIRECTORY, MPX_DEV, CHAR_DEV, BLK_DEV, and FIFO.

Page 16 of 23

hardlinks
List of hardlinks to the file. This value cannot be computed by the trustchk
command. It must be supplied by the user when adding a file to the database.

symlinks
List of symbolic links to the file. This value cannot be computed by the trustchk
command. It must be supplied by the user when adding a file to the database.

size
Defines size of the file. The VOLATILE value means that the file gets changed
frequently.

cert_tag
This field maps the digital signature of the file with the associated certificate that can
be used to verify the signature of the file. This field stores the certificate ID and is
computed by the trustchk command at the time of addition of the file to the TSD. The
certificates are stored in /etc/security/certificates directory.

signature
Digital signature of the file. The VOLATILE value means that the file gets changed
frequently. This field is computed by the trustchk command.

hash_value
Cryptographic hash of the file. The VOLATILE value means that the file gets
changed frequently. This field is computed by the trustchk command.

minslabel
Defines the minimum sensitivity label for the object.

maxslabel
Defines the maximum sensitivity label for the object (valid on Trusted AIX system).
This attribute is not applicable to regular files and fifo.

intlabel
Defines the integrity label for the object (valid on Trusted AIX system).

accessauths
Defines the access authorization on the object (valid on Trusted AIX system).

innateprivs
Defines the innate privileges for the file.

proxyprivs
Defines the proxy privileges for the file.

authprivs
Defines the privileges that are assigned to the user after given authorizations.

secflags
Defines the file security flags associated with the object.

t_accessauth
Defines the additional Trusted AIX with Multi-Level Security (MLS) specific access
authorizations (valid on Trusted AIX system).

t_innateprivs
Defines the additional Trusted AIX with MLS-specific innate privileges for the file
(valid on Trusted AIX system).

Page 17 of 23

t_proxyprivs
Defines the additional Trusted AIX with MLS-specific proxy privileges for the file
(valid on Trusted AIX system).

t_authprivs
Defines the additional Trusted AIX with MLS-specific privileges that are assigned to
the user after given authorizations (valid on Trusted AIX system).

t_secflags
Defines the additional Trusted AIX with MLS-specific file security flags associated
with the object (valid on Trusted AIX system).

When you add a new entry to TSD, if a trusted file has some symbolic or hard links pointing to it,
then these links can be added to the TSD by using symlinks and hardlinks attributes at the command
line, along with the trustchk command. If the file being added is expected to change frequently, then
use VOLATILE keyword at the command line. Then the trustchk command would not calculate the
hash_value and signature fields when it generates the file definition for addition into the TSD.
During integrity verification of this file, the hash_value and signature fields are ignored.

During addition of regular file definitions to the TSD, it is necessary to provide a private key
(ASN.1/DER format). Use the -s flag and digital certificate with the corresponding public key by
using the -v flag. The private key is used to generate the signature of the file and then discarded. It
is up to the user to store this key securely. The certificate is stored into a certificate store in
the/etc/security/certificates file for the signatures to be verified whenever you request integrity
verification. Since signature calculation is not possible for non-regular files like directory and
device files, it is not mandatory to supply the private key and certificate while adding such files to
TSD.

You can also supply the pre-computed file definition through a file by using the -f option to be
added to the TSD. In this case the trustchk command does not compute any of the values and stores
the definitions into TSD without any verification. The user is responsible for sanity of the file
definitions in this case. Using the -f filename flag, specifies that file definitions are to be read from
the file specified with the filename parameter. The file (or stanza) name must end with a colon.
There must be a blank line between each file name entry in the external file.

Supporting library verification
To support the library verification, the tsd.dat file is added in the /etc/security/tsd/lib/directory. The
name of the database is /etc/security/tsd/lib/lib.tsd.dat. This database is specifically for libraries that
include the stanzas for the .o files of a corresponding trusted library. The stanza for every object file
(*.o) of a library is in the format as specified in the following example.

For library libc.a if the strcmp.o file is one of the.o file type, then the stanza for strcmp.o file in
/etc/security/tsd/lib/lib.tsd.dat is similar to the following example:
/

usr/lib/libc.a/strcmp.o:
Type = OBJ
Size = 2345

Page 18 of 23

Hash value
Signature =
Cert_tag =

This database has the entries corresponding to type, size hash, cert tag, and signature of the .o file.
The hash of the library is updated in the /etc/security/tsd/tsd.dat file for the corresponding stanza.
These attribute values are dynamically generated during the build, and the values are moved into the
/etc/security/tsd/lib/lib.tsd.dat database during installation.

In the /etc/security/tsd/tsd.dat file, the stanzas for the libraries are modified to reflect the type
attribute as LIB and the size and signature attributes are empty. Currently the values for the
dynamic attributes size, hash, signature are maintained as a VOLATILE value. Therefore, the
library verification is skipped during system boot. Beginning with the release of AIX 6.1.0, the size,
hash, and signature of the trusted library stanzas are computed with the .o files of a library. During
installation, the tsd.dat database is populated to reflect the computed values and the
corresponding .o file stanza for a trusted library is stored in the /etc/security/tsd/lib/lib.tsd.dat
database.

2.3 Remote TE data base access:
Centralised Trusted Signature Database (TSD) policies and Trusted Execution (TE) policies can be
implemented in your system environment by storing them in LDAP.
The database that controls the TSD policies and TE policies are stored independently of each AIX
system. The centralised TSD policies and TE policies are stored in LDAP so that they can be
centrally managed. Using centralised TSD policies and TE policies allow you to verify that the
policies in LDAP are the master copy, and that the policies can update the clients whenever the
client is reinstalled, updated, or security is breached. Centralised TE policies allow one location to
enforce the TE policies without needing to update each client separately. Centralised TSD policies
are much easier to manage than TSD polices that are not centralised.

AIX Utilities can be used to export local TSD policies and TE policies data to LDAP, configure
clients to use TSD policies and TE policies data in LDAP, control the lookup of TSD policies and
TE policies data, and manage the LDAP data from a client system. The following sections provide
more information about these features.

2.4 Exporting TSD policies and TE policies data to LDAP:
To use LDAP as a centralised repository for TSD policies and TE policies, the LDAP server must be
populated with the policy data.

The LDAP server must have the TSD policies and the TE policies schema for LDAP installed,
before LDAP clients can use the server for policy data. The TSD policies and the TE policies
schema for LDAP is available on an AIX system in the /etc/security/ldap/sec.ldif file. The schema
for the LDAP server must be updated with this file by using the ldapmodify command.

Page 19 of 23

To identify a version the TE databases on the LDAP server and make LDAP clients aware of the
particular version, you must set the databasename attribute in the /etc/nscontrol.conf file. The
databasename attribute takes any name as the value, and it is used by the tetoldif command while
generating the ldif format.

Use the tetoldif command to read the data in the local TSD policies and TE policies files, and output
the policies in a format that can be used for LDAP. The output generated by the tetoldif command
can be saved to a file in ldif format, and then used to populate the LDAP server with the data with
the ldapadd command. The following databases on the local system are used by the tetoldif
command to generate the TSD policies and TE policies data for LDAP:

• /etc/security/tsd/tsd.dat
• /etc/security/tsd/tepolicies.dat

2.5 LDAP client configuration for TSD policies and TE
policies:
A system must be configured as an LDAP client to use TSD policies and TE policies data stored in
LDAP.

Use the AIX /usr/sbin/mksecldap command to configure a system as an LDAP client. The
mksecldap command dynamically searches the specified LDAP server to determine the location of
the TSD policies and TE policies data, and saves the results to the /etc/security/ldap/ldap.cfg file.

After successfully configuring the system as an LDAP client with the mksecldap command, the
system must be further configured to enable LDAP as a lookup domain for TSD policies and TE
policies data by configuring the secorder of the /etc/nscontrol.conf file.

Once the system has been configured as a LDAP client and as a lookup domain for TSD policies
and TE policies data, the /usr/sbin/secldapclntd client daemon retrieves the TSD policies and TE
policies data from the LDAP server whenever any trustchk commands are performed on the LDAP
client.

2.6 Enabling LDAP with the trustchk command:
All of the TSD policies and TE policies database management commands are enabled to use the
LDAP TSD policies and TE policies database.

Use the trustchk command with the –R flag, to perform the initial setup of LDAP database. The
initial setup involves the addition of TSD policies, TE policies, base DNs, and the creation of the
local database /etc/security/tsd/ldap/tsd.dat file and /etc/security/tsd/ldap/tepolicies.dat file. If the
trustchk command is run with the –R flag using the LDAP option, the operations are based on the

Page 20 of 23

LDAP server data. If the trustchk command is run with the –R flag using the files option, the
operations are based on the local database data. The default for the –R flag is to use the files option.

2.7 Auditing the integrity of Trusted Signature Database:
The trustchk command can be used to audit the integrity state of the file definitions in the Trusted
Signature Database (TSD) against the actual files.

If the trustchk command identifies an anomaly, then it can be made to automatically correct it or
prompt the user before attempting correction. If anomalies like size, signature, cert_tag or
hash_value mismatch, the correction is not possible. In such cases, the trustchk command would
make the file inaccessible, thereby rendering it useless and containing any damage.

2.8 Security policies configuration:
The Trusted Execution (TE) feature provides you with a run-time file integrity verification
mechanism.

Using this mechanism, the system can be configured to check the integrity of the trusted files before
every request to access those file, effectively allowing only the trusted files that pass the integrity
check to be accessed on the system. When a file is marked as trusted (by adding its definition to
Trusted Signature Database), the TE feature can be made to monitor its integrity on every access.
TE can continuously monitor the system and is capable of detecting tampering of any trusted file
(by a malicious user or application) present on the system at run-time (for example, at load time). If
the file is found to be tampered, TE can take corrective actions based on pre-configured policies,
such as disallow execution, access to the file, or logging error. If a file being opened or executed,
and has an entry in the Trusted Signature Database (TSD), the TE performs as follows:

• Before loading the binary, the component responsible for loading the file (system loader)
invokes the Trusted Execution subsystem, and calculates the hash value using the SHA-256
algorithm (configurable).

• This run-time calculated hash value is matched with the one stored in the TSD.
• If the values match, the file opening or execution is permitted.
• If the values do not match, either the binary is tampered, or somehow compromised. It is up

to the user to decide the action to be taken. The TE mechanism provides options for users to
configure their own policies for the actions to be taken if the hash values do not match.

• Based on these configured policies, a relevant action is taken.

The following policies can be configured:
CHKEXEC

Check hash value of only the trusted executables before loading them in memory for
execution.

Page 21 of 23

CHKSHLIBS
Check the hash value of only the trusted shared libraries before loading them in
memory for execution.

CHKSCRIPTS
Check the hash value of only the trusted shell scripts before loading them in memory.

CHKKERNEXT
Check the hash value of only the kernel extension before loading it in memory.

STOP_UNTRUSTD
Stop loading of files that are not trusted. Only files belonging to TSD are loaded. This
policy only works in combination with any of the CHK* policies mentioned above.
For example, if CHKEXEC=ON and STOP_UNTRUSTD=ON, then any executable
binary that does not belong to TSD is blocked from execution.

STOP_ON_CHKFAIL
Stop loading of trusted files that fail hash value check. This policy also works in
combination with CHK* policies. For example, if CHKSHLIBS=ON and
STOP_ON_CHKFAIL=ON, then any shared library not belonging to the TSD is
blocked from being loaded into memory for use.

TSD_LOCK
Lock TSD so it is not available for editing.

TSD_FILES_LOCK
Lock trusted files. This does not allow opening of trusted files in write mode.

TE
Enable/Disable Trusted Execution functionality. Only when this is enabled, the above
mentioned policies are in effect.

The following table gives the interaction between different CHK* policies and STOP* policies
when
enabled:

Policy STOP_UNTRUSTD STOP_ON_CHKFAIL
CHKEXEC Stop loading of executables that

do not belong to TSD.
Stop loading of executables
whose hash values do not match
the TSD values.

CHKSHLIBS Stop loading of shared libraries
that do not belong to TSD.

Stop loading of shared libraries
whose hash values do not match
the TSD values.

CHKSCRIPTS Stop loading of shell scripts that
do not belong to TSD.

Stop loading of shell scripts
whose hash values do not match
the TSD values.

CHKKERNEXT Stop loading of kernel
extensions that do not belong to
TSD.

Stop loading of kernel
extensions whose hash values
do not match the TSD values.

Page 22 of 23

Note: A policy can be enabled or disabled at any time until the TE is turned on to bring the policies
into effect. Once a policy is in effect, disabling that policy becomes effective only on next boot
cycle. All the information messages are logged into syslog.

2.8.1 Trusted Execution Path and Trusted Library Path:
Trusted Execution Path (TEP) defines a list of directories that contain the trusted executables. Once
TEP verification is enabled, the system loader allows only binaries in the specified paths to execute.
Trusted Library Path (TLP) has the same functionality, except that it is used to define the directories
that contain trusted libraries of the system.

Once TLP is enabled, the system loader allows only the libraries from this path to be linked to the
binaries. The trustchk command can be used to enable or disable the TEP or TLP, as well as set the
colon separated path list for both, using TEP and TLP command line attributes of the trustchk
command.

2.8.2 Trusted Shell and Secure Attention Key:
Trusted Shell and Secure Attention Key (SAK) perform similarly to the Trusted Computing Base
(TCB), except that if Trusted Execution is enabled on the system instead of TCB, the Trusted Shell
executes files belonging only to the Trusted Signature Database.

For more information about TCB and SAK, see Trusted Computing Base, Using the Secure
Attention Key, and Configuring the Secure Attention Key.

2.8.3 Trusted Execution (TE) policies Database:
The Trusted Execution (TE) policies are stored in the /etc/security/tsd/tepolicies.dat file. The path
for the TE policies are listed with the TLP directories and TEP directories.

Page 23 of 23

	1 Trusted Execution
	1.1 Background
	1.2 Trusted Execution – audit
	1.3 How to configure TE policies:
	1.4 How to add non IBM supplied binary to the TSD
	1.5 Adding TE messages to syslog
	1.6 Using the AIX Audit system
	1.7 Steps to forward auditing to syslog daemon
	1.8 Enabling TSD Protection
	1.9 Trusting shell scripts
	1.10 Trusted Execution Path
	1.11 Trusted Library Path
	1.12 Short examples
	1.13 Files
	1.14 Third party tools - XYMON

	2 Trusted Signature Database
	2.1 Location of the TSD
	2.2 Details of the TSD
	2.3 Remote TE data base access:
	2.4 Exporting TSD policies and TE policies data to LDAP:
	2.5 LDAP client configuration for TSD policies and TE policies:
	2.6 Enabling LDAP with the trustchk command:
	2.7 Auditing the integrity of Trusted Signature Database:
	2.8 Security policies configuration:
	2.8.1 Trusted Execution Path and Trusted Library Path:
	2.8.2 Trusted Shell and Secure Attention Key:
	2.8.3 Trusted Execution (TE) policies Database:

